
THREAD PARALLELISM

Stephen Beard1

LECTURE OUTLINE

 Introduction to Threads

 Correctness

 Performance

2

INTRODUCTION TO THREADS

3

WHAT IS A THREAD?
4

WHAT IS A THREAD?

5

THREADS VS. PROCESSES

Process
 “Heavyweight”

 Slower context switches

 Expensive IPC

 Independent

 Secure

 Protected memory space

Thread
 “Lightweight”

 Faster context switches

 Direct communication

 Share state and resources

 Insecure

 Shared memory space

(Generalities)

6

USER THREADS AND KERNEL THREADS

7

 User Thread
 Implemented in software

library

 Transparent to the OS

 Will block other threads

 Library typically uses

non-blocking calls then

manages threads

 Fast to create and manage

 Do not benefit from

multithreading or

multiprocessing

 Kernel Thread

 Managed by OS

 Will not block other

threads

 Slower to swap than

user threads

THREAD IMPLEMENTATIONS

Many to One Many to Many

One to One

8

WHY USE THREADS?
9

WHY USE THREADS?
 Interactive Programs – Avoid blocking!

 Modern Hardware

is designed for

thread level

parallelism

(TLP)

10

Source: Tom Ball - PPCP-54454

HARDWARE FOR TLP

 Chip Multi-Processors

 GPUs

 Clusters

 Cloud Computing

 Multithreading

11

MULTI-THREADING TERMS

 Superscalar – ILP mechanism for performing
multiple instructions concurrently (One CPU with
multiple functional units)

 Fine-Grained – Switch between threads on each cycle

 Coarse-Grained – Switch between threads on „costly‟
stalls (such as L2 cache miss)

 Multiprocessing – Multi-core

 Simultaneous – Multiple threads running
concurrently on single processor 12

MULTITHREADING
Intel

Pentium 4

Intel

Itanium 2

Intel

Hyper-Threading

Ex:

13

Sun

UltraSPARC

Source: Dr. Chris Lupo – CPE520 Advanced Computer Architecture Winter 2010

Intel

Core 2 Duo

PTHREADS

14

PTHREADS (POSIX THREADS)

 C library that provides

 Thread management

 Shared Memory

 Locks

 In Linux

 One to One

 Created using „clone‟

15

SIMPLE PTHREAD EXAMPLE

16

METHODS OF THREAD COMMUNICATION

17

int gInt;

spawn t1, t2;

t1:

…

gInt = 5

…

t2:

…

…

int lInt = gInt

print lInt -> 5

…

Shared Memory -Memory that may be

simultaneously accessed by multiple threads

METHODS OF THREAD COMMUNICATION

18

t1:

send 5

t2:

…

…

recv lInt

Print lInt -> 5

Message Passing - Threads pass messages for data

transfer and synchronization

THREAD CORRECTNESS

19

RACE CONDITIONS

 Unsynchronized access to shared state from

multiple threads whose outcome depends upon

the order of access

 r1.check, r2.check, r1.move, r2.move,CRASH

20

r1

r1

r2

r2

Source: Tom Ball - PPCP-54454

RACE CONDITION PROGRAM

21

SYNCHRONIZATION

 Want to be able to control access to shared

memory

 Several methods exist:

 Mutex

 Semaphore

 Monitors

 Barriers

22

NAIVELY FIXING OUR ROBOTS

23

lock()

r1.check()

unlock()

...

…

lock()

r1.move()

unlock()

lock()

…

…

r2.check()

unlock()

lock()

…

…

r2.move()

unlock()

Robot 1 Robot 2

CRASH

24

ATOMICITY

 A statement sequence S is atomic if S‟s effects

appear to other threads as if S executed without

interruption

FIXING OUR ROBOTS

25

lock()

r1.check()

r1.move()

unlock()

lock()

…

…

…

r2.check()

unlock()

Robot 1 Robot 2

r1

r2

r1

r2

MUTEX EXAMPLE

26

MUTEX IMPLEMENTATION - HARDWARE

 Using XCHG on x86 to implement a mutex

 XCHG exchanges two operands. If a memory operand

is involved, BUS LOCK is asserted for the duration of

the exchange.

27

LOCK: ; mutex pointer is in EBX; clobbers EAX
XOR EAX, EAX ; Set EAX to 0
XCHG EAX, [EBX]
AND EAX, EAX ; Test for 1
JZ LOCK ; if we got a zero, spin-wait
RET

UNLOCK: ; mutex pointer is in EBX
MOV [EBX], 1
RET

MUTEX IMPLEMENTATION - SOFTWARE

 Peterson‟s Algorithm

 Works for two processes, but can generalize

 Does not work with out-of-order execution

28

flag[0] = 0;
flag[1] = 0;

P0: flag[0] = 1; P1: flag[1] = 1;
turn = 1; turn = 0;
while (flag[1] == 1 && turn == 1) while (flag[0] == 1 && turn == 0)
{ {

// busy wait // busy wait
} }
// critical section // critical section

... ...
// end of critical section // end of critical section
flag[0] = 0; flag[1] = 0;

MUTEX IMPLEMENTATION

 Exact locking mechanism is hardware dependent

 If a thread fails to acquire lock

 Waits for lock

 Spin vs Yield

 How to handle multiple threads waiting on single lock

 Queue

 Scheduler

 Reentrant Locks

 Allowed to acquire same lock multiple times

 Must be released same number of times

29

OTHER ISSUES WITH LOCKS

 Dead-lock – Circular waiting on locks

 Live-lock – Locks state changing with no progress

 Lock contention – Many threads require access to
single lock

 Lock overhead – Locking mechanisms are slow

 Priority Inversion – Low priority thread holds lock,
prevents progress of high priority

 Convoying – Lock contention with slowest threads
acquiring the lock first 30

PERFORMANCE

31

THREAD GRANULARITY

32

THREAD GRANULARITY

 Better to have lots of threads doing a little work

or a few threads doing lots of work?

 Depends on:

 How much communication overhead will result?

 Implementation of threads

 Hardware

33

JACOBI ITERATIONS

 For a matrix, on each iteration element‟s new

value = average of neighbors old values

 How many threads?

34

JACOBI IN C USING MPI

35

Row for 800 iterations

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

Space Size

T
im

e
 (

s
e
c
o

n
d

s
)

4

16

64

Erlang MPI

JACOBI IN ERLANG

36

LOCKING GRANULARITY

37

LOCKING GRANULARITY

 Better to lock the entire structure, or parts?

 Lock entire list when performing an operation

 Only alter one lock per access to list

 One thread in list blocks all others from accessing list

 Lock each element of the list, hand-over-hand

 Threads can work on different parts of the list concurrently

 Lock per element, or group of elements

 Threads in front of list prevent access to rest of list

38

LOCK FREE DATA STRUCTURES

39

LOCK-FREE ALGORITHMS

 Can be more efficient and scalable than locking

 Not the same as wait-free

 Lock-free guarantees system progress

 Wait-free guarantees thread progress

 Operation must have bound on number of steps till

completion

 Very rare as their performance is generally low

 Good for many reads, few writes

 Most attempt operation then retry if changed

occurred during operation 40

COMPARE-AND-SWAP

CMPXCHG ON X86

 Atomically compares contents of memory location

to a given value, if they match it updates value

 Hardware support handles this operation

atomically

 Integral in lock free structures

41

int compare_and_swap (int* register, int oldval, int newval)
{

int old_reg_val = *register;
if (old_reg_val == oldval)

*register = newval;
return old_reg_val;

}

LOCK-FREE LINKED LIST – INSERTION

42

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location,

note left and right

nodes

LOCK-FREE LINKED LIST – INSERTION

43

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location,

note left and right

nodes

 Set new.next = right

LOCK-FREE LINKED LIST – INSERTION

44

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location,

note left and right

nodes

 Set new.next = right

 If(CAS &left.next,

right, new) then return

LOCK-FREE LINKED LIST – INSERTION

45

 Create new node

 do

 Find insertion location,

note left and right

nodes

 Set new.next = right

 If(CAS &left.next,

right, new) then return

 while(true)

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST

 Delete creates problems

 Naive Delete

 Fails for concurrent insert

46

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST

 Correct delete requires two compares

 First mark deleted node as „logically deleted‟

 Then „physically delete‟ the node

47

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

PERFORMANCE OF LOCK-FREE LINKED LIST

48
1 million random insertion, deletions on keys 0 - 8191

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE ABA PROBLEM – 1

49

Thread 1:

Insert 20 #interupted

Thread 2:

...

ABA PROBLEM – 2

50

Thread 1:

Insert 20 #partial completion

...

Thread 2:

...

delete 30 address A

ABA PROBLEM – 3

51

Thread 1:

Insert 20 #partial completion

...

...

Thread 2:

...

delete 30 #address A

insert 15 #address A

ABA PROBLEM – 4

52

Thread 1:

Insert 20 #partial completion

...

...

Insert 20 #finishes and

#improperly succeeds

Thread 2:

...

delete 30 #address A

insert 15 #address A

SOLUTIONS TO ABA

 Keep “tag” bits on each pointer – ABA‟

 Requires double-word CAS

 Use reference counts on cells (Valois)

 Only reuse cell when reference count = 0

 Use „Load Linked‟ and „Store Conditional‟

 LL returns value of memory location

 SC stores only if no updates occurred since LL

53

PERFORMANCE NOT ALWAYS GREAT

54

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

1 million random insertion, deletions on keys 0 - 255

NEXT TIME…
Multi-process synchronization problems

•Producer Consumer!

•Reader-Writer!

•DOALL!

55

APPENDIX

More interesting topics56

AVOIDING ERRORS WITH PTHREADS

 Create data structures that handle most of the

synchronization for you

 Code the locks once correctly, then don‟t worry about

them anymore

 For example:

 Create a synchronized list

 Perform locks inside add/remove/search functions

 Synchronization now transparent to rest of program

57

SMART PROGRAMMING WITH PTHREADS

 Locks serialize the program, want to use as little

as possible

 Only place lock around critical area

 Less time spent holding lock, less lock contention

 Locks have high overhead

 Constant locking and unlocking can result in poor

performance

58

WHAT IS A DATA RACE?

 Two concurrent accesses to a memory location at least

one of which is a write.

 Example: Data race between a read and a write

int x = 1;

Parallel.Invoke(

() => { x = 2; },

() => { System.Console.WriteLine(x); }

);

 Outcome nondeterministic or worse

 may print 1 or 2, or arbitrarily bad things on a relaxed

memory model

writes

x
reads x

59
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

DATA RACES AND HAPPENS-BEFORE

 Example of a data race with two writes:

int x = 1;

Parallel.Invoke(() => { x = 2; },

() => { x = 3; });

System.Console.WriteLine(x);

 We visualize the ordering of memory accesses with a

happens-before graph:

There is no path between

(write 2 to x) and (write 3 to x),

thus they are concurrent,

thus they create a data race

(note: the read is not in a data race)

write 2 to x write 3 to x

write 1 to x

read x

60
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

QUIZ: WHERE ARE THE DATA RACES?

Parallel.For(1,2,
i => {

x = a[i];
});

Parallel.For(1,2,
i => {

a[i] = x;
});

Parallel.For(1,2,
i => {

a[i] = a[i+1];
});

61
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

QUIZ: WHERE ARE THE DATA RACES?

Parallel.For(1,2,
i => {

x = a[i];
});

reads

a[0]
writes x

reads

a[1]
writes xrace

Parallel.For(1,2,
i => {

a[i] = x;
});

reads x

writes

a[0]

reads x

writes

a[1]

Parallel.For(1,2,
i => {

a[i] = a[i+1];
});

reads

a[2]
writes

a[1]

reads

a[3]
writes a[2]

Race between two

writes.

Race between a

read and a write.
No Race between

two reads.

62
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

SPOTTING READS & WRITES

 Sometimes a single statement performs multiple

memory accesses

6/22/2010
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

63

When you execute

a[i] = x

there are actually three

reads and one write:

reads x

reads a

reads i

writes a[i]

When you execute

x += y

there are actually two

reads and one write:

reads x

reads y

writes x

DATA RACES CAN BE HARD TO SPOT.

 Code looks fine... at

first.

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

64
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

DATA RACES CAN BE HARD TO SPOT.

 Problem: we have to follow calls... even if they look

harmless at first (like a constructor).

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

class Foo {
private static int counter;
private int unique_id;
public Foo()

{
unique_id = counter++;
}

}
65

Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

