
COS597C: Assignment 2

Problem 1

1 Submission Instructions

Email a SINGLE tgz containing EVERYTHING that you wish to submit.
To:rarun@princeton.edu, sinha@princeton.edu
Cc: august@cs.princeton.edu, dpw@cs.princeton.edu
Subject line should start with “COS597C:”.

2 Problem 1

A sequential C implementation of the quicksort algorithm (quicksort.c) and a
client of the sorting routine (client.c) are provided.

Your task is to implement a parallel version of the quicksort routine using
pthreads by filling in the skeleton method in quicksort par.c (see algorithm
below). A good pthreads primer is available at
https://computing.llnl.gov/tutorials/pthreads/
Your implementation will be tested against a different client (similar to the
provided client) that will sort pseudo-randomly generated arrays of different
sizes. Note that the provided client program does NOT check the correctness of
your sorting routine. To build the client with the sequential sorting routine, type
“make seq”. This creates the “client seq” program. To build the client with
the parallel sorting routine, type “make par”. This creates the “client par”
program. Both of these programs have the following command line options:

• -t [num threads] : optional argument (positive integer, default is 1)

• -n [number of array elements] : optional argument that can be varied to
sort arrays of different sizes (positive integer, default is 50000000)

• -h : Display help

An execution of the client will output the wall clock execution time of the
sorting routine in seconds (measured using clock gettime). Use this number
to compute speedups.

Submit quicksort par.c along with a report containing the following sections.
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2.1 ALGORITHM

Quicksort identifies a pivot element in the array, and partitions the array into
subarrays such that the first partition contains all elements smaller than the
pivot while the second partition contains all elements greater than or equal to
the pivot. Then quicksort is recursively called on each of the two subarrays.
One way to parallelize the quicksort algorithm is to assign each of the recursive
calls to quicksort to a different thread. You are expected to implement this
parallel algorithm.

The primary impediment to getting “good” speedup is load imbalance among
the threads. To understand this, consider the getPivot implementation pro-
vided. It uses the middle element of the array as the pivot. Using this element
as the pivot may not partition the array into equally sized subarrays. Con-
sequently, a naive parallelization using the provided getPivot implementation
would be suboptimal. Your parallel algorithm should address this problem of
determining how to keep a given number of hardware threads (specified via
the [num threads] argument to client par) busy in a useful way to maximize
speedup.

Provide pseudo code for your parallel algorithm (including the getPivot

heuristic in case you modify it) and give an informal proof of its correctness.
Provide an analysis of the time complexity of the sequential and parallel algo-
rithms using asymptotic notation.

2.2 EXPERIMENTAL RESULTS

In this section, you should compare the actual running times to their theoretical
complexity. You are free to use any machine with a sufficient number of hard-
ware contexts (for example, 8). Provide details of the machine in your report.
Those who do not have access to a suitable machine can use c2.cs.princeton.edu.
It has 8 hardware contexts.

Show:

1. Speedup (y-axis) vs. #threads (x-axis): For the default data size, show
the speedup for the parallel version as you vary the number of threads
(1,2,4,6,8,...). The speedup should be calculated with respect to the se-
quential implementation. Also, report the execution time of the sequential
implementation.

2. Speedup (y-axis) vs. data size: For #threads equal to eight (or maxi-
mum on your machine), show the speedup over sequential implementation
by varying n (size of array) by orders of magnitude between 5000 and
500000000.

For the two experiments above, compare the theoretically expected perfor-
mance and the experimentally obtained performance.
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COS597C: Assignment 2 

Problem 2 

1   Submission Instructions 

You can submit your answer to this problem on paper in class on October 14 or email a soft copy as part 
of the single tgz for this assignment (see submission instructions for Problem 1 above). 

2   Problem 2 

2.1   Serializability 

There are several properties which a programmer desires in a parallel program, such as serializability, 
linearizability, etc. These properties are helpful in reasoning about the correctness of the program under 
arbitrary scheduling of threads. The following problem attempts to give a deeper insight into the property 
of serializability. 

 A history can be defined as the sequence of accesses of global shared variables (you can think of history 
as a trace which logs the accesses made to shared variables during the execution of the parallel program). 
For instance,  

h = W1[x,y] R1[y] R2[y] W2[x].  

In this history, the global accesses of two atomic sections (often referred to as transactions) are recorded.  
W and R stand for write and read respectively. The subscripts for W and R stand for the transaction 
indices. The variables inside the square brackets denote the shared variable accesses.  

The first transaction (T1) writes variables x and y and then reads variable y. Similarly, the second 
transaction (T2) reads y and writes x. (Assume that no two transactions are executed in the same thread.) 
Observe that history h is serial since the accesses do not overlap.  

Often, the given history is not serial but still it is serializable. To show that a given history is serializable, 
it is necessary to show that it is equivalent to a serial history. Two histories are equivalent iff there exists 
a sequence of steps, where on each step the positions of two adjacent accesses can be swapped. The 
permitted swapping operations between two adjacent accesses are the following. 

1) Two adjacent reads. 
2) Two adjacent read and write accesses with disjoint sets of variables being accessed. 
3) Two adjacent writes with disjoint sets of variables being accessed. 

Consider another history (h’ say). 

    h’ = R1[x] R2[x] W1[x] W2[y]. 

 



As an illustration:  h’ = R1[x] R2[x] W1[x] W2[y] 

        Ȅ R1[x] R2[x] W2[y] W1[x]      (W1 and W2 are swapped) 

        Ȅ R2[x] R1[x] W2[y] W1[x]      (R1 and R2 are swapped) 

         Ȅ R2[x] W2[y] R1[x] W1[x]      (R1 and W2 are swapped) 

 Therefore, h’ is equivalent to a serial history and hence serializable.  

We consider history h’’ which is not serializable. 

                                                          h’’ = R1[x] W2[x] W2[y] R1[y] 

We prove that h’’ is not serializable by contradiction. Assume h’’ is serializable. Then there are two 
possibilities: 

Case 1: (T1 precedes T2). In that case h’’ should be equivalent to hs’’ where,  

                                                       hs’’= R1[x] R1[y] W2[x] W2[y]           

But, R1[y] and W2[y] cannot swap positions in h’’. Therefore, h’’ cannot be equivalent to hs’’. 

Case 2: (T2 precedes T1). In that case h’’ should be equivalent to hs’’ where,  

                                                       hs’’= W2[x] W2[y] R1[x] R1[y]            

But, R1[x] and W2[x] cannot swap positions in h’’. Therefore, h’’ cannot be equivalent to hs’’. 

 Hence, h’’ is not serializable. 

Which of the following histories are serializable? Justify your answer. [If serial, show the sequence of 
swaps among the adjacent accesses leading to a serial history. If not, assume the history is serializable 
and try to prove by contradiction.] 

1. h1 = R1[x] W2[x] R1[y]. 

2. h2 = R1[x] W2[x,y] R1[y].    

3. h3 = R1[x] R2[x] W1[x,y] W2[y]. 

4. h4 = R3 [x] W1 [x] R2 [y] W3 [y] 

 

 

 

 



2.2   Memory Consistency Models – Constraint Graph Modeling 

Memory consistency model determines the ordering of memory operations. The result of multi-threaded 
program is dependent on this order of the memory operations. Consider the following example. This code 
attempts to ensure mutual exclusion assuming SC (sequential consistency). A legal execution trace is:  

(1.1)(1.2) (2.1) (2.2). 

Therefore, only Thread 1 enters critical section. However, another possible (illegal) execution trace that 
violates SC is: 

(1.2)(2.1)(2.2)(1.1). 

In this execution, both the threads may enter the critical section simultaneously.  

A violation of the assumed memory consistency model can be detected by constructing a constraint graph 
(CG). A constraint graph is a directed graph that models memory ordering constraints and dependence 
constraints for a given trace. The vertices in CG are defined by the accesses made to the global shared 
variables. An intra-thread edge (u, v) in CG denotes that event u must happen before event v. A directed 
inter-thread edge (u,v) in CG denotes the dependence edges (read-after-write (RAW), write-after-read 
(WAR), write-after-write (WAW)) such that u happened before v in the trace. A cycle in CG implies 
violation of memory consistency model. 

In the aforementioned example, for the illegal trace ((1.2)(2.1)(2.2)(1.1)) a cycle is found in its CG 
(load = read, store = write). 

 

We introduce another popular memory consistency model used in Sun SPARC – Total Store Order 
(TSO). TSO can be characterized as 
follows: 

1. All instructions commit in program 
order, except “write u; read v” can commit 
as “read v; write u”. 
2. Commit of write can be delayed.  
3. “write u; write v” cannot be re-ordered. 
“write u; read u”   cannot be re-ordered. 
 



Construct the constraint graph for the following program execution assuming TSO and check if there is 
any cycle. (Hint: Vertices are already given. You have to draw the inter- and intra-thread edges as defined 
earlier) 

 


