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Motivation

● As argued by “StreamIt Cookbook”:

● Why von Neumann languages (C/C++/Java) successful?

– Abstract out differences of von Neumann machines

– Efficient mapping to von Neumann machine 

● “Today von Neumann languages are a curse!”

– Efficient mapping to parallel architectures difficult

– Force programmer to take target architecture into 
account

– Force programmer to explicitly parallelize: deal with 
threads, communication and synchronization



  

Motivation
● Want implicitly parallel abstraction that

– Abstracts out differences in parallel architectures 
(number of cores, communication methods, 
synchronization methods, etc.)

– Allows efficient mapping to parallel architecture

– Directly exposes tasks that can run in parallel
● Stream Programming Abstraction

– Trade off generality for performance and ease of 
programming

– Many applications naturally fit paradigm

– Implicitly parallel

– Allows efficient mapping by compiler
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Stream Programming

Stream Program



  

Stream Programming: Example

Source: http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf


  

Stream Programming: Applications

● Mobile
– Compression (LZW)

– Encryption (DES)

● Desktop
– Streaming audio / video (MPEG-2)

– Graphics (Depth of Field)

● Servers
– Software routers

– Modulation / Demodulation (Cell phone)



  

Stream Programming: Properties

● Large/Unbounded amount of data
– Short lifetime per data item

– Minimal processing per data item

● Regular, repeating computation
– Static structured graph of filters

– Independent actors 

– Explicit communication



  

Stream Programming: Properties

● Filter is autonomous unit of computation
● Each filter

– Own PC

– Own Address space

● Filters
– Unaware of execution order

– Communicate explicitly

● Stream program consists of a static structured 
graph of filters
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StreamIt Language

● Program consists of filters connected by structured graph

● Filter

– Autonomous unit of computation

– Single input, single output

– Stateful / Stateless

– Composable

● Pipeline

– Filters connected by FIFO queues

● Structured Stream

– Pipeline

– Splitjoin and Feedback Loop



  

StreamIt Language: Filter

Averager(n)

Code Source: http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

int->int filter Averager(int n) {
  work pop 1 push 1 peek n {
    int sum = 0;
    for (int i = 0; i < n; i++)
      sum += peek(i);
    push(sum/n);
    pop();
  }
}

http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf


  

StreamIt Language: Filter

● Declaration

– Defines input / output data type (int, float, bit, complex, struct)

– Parameters for filter instantiation (parameters constant in 
init/work)

● Init Function

– Called once to set up state

● Work Function

– Called forever

– Defines number of items popped from input stream, pushed to 
output stream, peeked at from input stream

– Push/pop rates do not have to match



  

StreamIt Language: Pipeline

Averager(10)IntSource IntPrinter

Code Source: http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

void->void pipeline MovingAverage {
  add IntSource();
  add Averager(10);
  add IntPrinter();
}

http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf


  

StreamIt Language: SplitJoin

Averager(n)

Split (DUP) Join (RR)

Averager(m)

Trender

float->float splitjoin 
dualAverager(int n, int m) {
  split duplicate;
  add Averager(n);
  add Averager(m);
  join roundrobin;
}

float->int filter Trender{
  work pop 2 push 1 {
    float a = pop();
    float b = pop();
    if (a > b) { push(1); }
    else { push(0); }
  }
}



  

StreamIt Language: SplitJoin

● Split: divide stream into multiple streams
– Duplicate 

– Round robin

● Join: combine streams into single stream
– Round robin

● Can specify flow rate from each input/output 
filter



  

StreamIt Language: FeedbackLoop

Body (Anonymous)
DifferenceBypass

Split (RR)

Join (RR)

Identity

int->int feedbackloop 
EdgeDetecter {
  join roundrobin(1, 1);
  body int->int filter {
    work pop 2 push 2 peek 2 {
      push(peek(0)-peek(1));
      push(peek(0));
      pop();
      pop();
    }
  }
  loop Identity<int>;
  split roundrobin(1, 1);
  enqueue(0);
}



  

StreamIt Language: FeedbackLoop

● Join: combine input and loop feedback

● Body: filter for forward operation

● Loop: filter for reverse operation

● Split: split forward operation output into output and loop feedback 
input

● Enqueue: initial values on joiner feedback path

● Deadlock if loop filter output becomes empty

● Prequeue values with enqueue to ensure joiner always has input at 
startup

● Immediate data dependency with slow body can slow execution of 
feedback block
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StreamIt Parallelization

● Structured Graph Exposes Parallelism
– Task parallelism (example Threads)

– Data parallelism (example Do All)

– Pipeline parallelism (example ILP)

● Target architectures vary
– Granularity

– Topology

– Communication

– Memory

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler

● Partitioning/Placement
– Coarsen Granularity

– Data Parallelize

– Software Pipeline

● Scheduling
● Code Generation (output C/Java code)



  

StreamIt Parallelization: Compiler
● Naïve Partitioning / Scheduling
● Fine-grained data parallelism

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler
● Large synchronization overhead

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler

● Ideal Partitioning
– Each filter has dedicated tile

– Each filter performs same amount of work

● Compiler Algorithm

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler
● Coarsen Granularity, Data Parallelization

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler
● Task Parallelization

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler
● Lower synchronization overhead

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler
● Software Pipeline

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

StreamIt Parallelization: Compiler

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html


  

Streamit Parallelization: Scheduler

● Steady state remains same for each cycle
– Find steady state schedule at compile time

– All data rates known at compile time

– Solve system of linear equations to find steady 
state schedule

● Find prologue schedule
● Low scheduling overhead at runtime



  

Conclusions
● Stream Programming

– Programmer does not need to focus on 
concurrency

– Programmer does need to be aware of which 
techniques run more efficiently in parallel

– Exposes task, data and pipeline parallelism

● Compiler can manage parallelism
– Choose granularity

– Perform load balancing

– Take care of concurrency issues

– Optimize for given architecture
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