

StreamIt

Tarun Pondicherry
COS 597C

November 18, 2010

Overview

● Motivation
● Stream Programming
● StreamIt Language
● StreamIt Parallelization
● Conclusions

Overview

● Motivation
● Stream Programming
● StreamIt Language
● StreamIt Parallelization
● Conclusions

Motivation

● As argued by “StreamIt Cookbook”:

● Why von Neumann languages (C/C++/Java) successful?

– Abstract out differences of von Neumann machines

– Efficient mapping to von Neumann machine

● “Today von Neumann languages are a curse!”

– Efficient mapping to parallel architectures difficult

– Force programmer to take target architecture into
account

– Force programmer to explicitly parallelize: deal with
threads, communication and synchronization

Motivation
● Want implicitly parallel abstraction that

– Abstracts out differences in parallel architectures
(number of cores, communication methods,
synchronization methods, etc.)

– Allows efficient mapping to parallel architecture

– Directly exposes tasks that can run in parallel
● Stream Programming Abstraction

– Trade off generality for performance and ease of
programming

– Many applications naturally fit paradigm

– Implicitly parallel

– Allows efficient mapping by compiler

Overview

● Motivation
● Stream Programming
● StreamIt Language
● StreamIt Parallelization
● Conclusions

Stream Programming

Stream Program

Stream Programming: Example

Source: http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

Stream Programming: Applications

● Mobile
– Compression (LZW)

– Encryption (DES)

● Desktop
– Streaming audio / video (MPEG-2)

– Graphics (Depth of Field)

● Servers
– Software routers

– Modulation / Demodulation (Cell phone)

Stream Programming: Properties

● Large/Unbounded amount of data
– Short lifetime per data item

– Minimal processing per data item

● Regular, repeating computation
– Static structured graph of filters

– Independent actors

– Explicit communication

Stream Programming: Properties

● Filter is autonomous unit of computation
● Each filter

– Own PC

– Own Address space

● Filters
– Unaware of execution order

– Communicate explicitly

● Stream program consists of a static structured
graph of filters

Overview

● Motivation
● Stream Programming
● StreamIt Language
● StreamIt Parallelization
● Conclusions

StreamIt Language

● Program consists of filters connected by structured graph

● Filter

– Autonomous unit of computation

– Single input, single output

– Stateful / Stateless

– Composable

● Pipeline

– Filters connected by FIFO queues

● Structured Stream

– Pipeline

– Splitjoin and Feedback Loop

StreamIt Language: Filter

Averager(n)

Code Source: http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

int->int filter Averager(int n) {
 work pop 1 push 1 peek n {
 int sum = 0;
 for (int i = 0; i < n; i++)
 sum += peek(i);
 push(sum/n);
 pop();
 }
}

http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

StreamIt Language: Filter

● Declaration

– Defines input / output data type (int, float, bit, complex, struct)

– Parameters for filter instantiation (parameters constant in
init/work)

● Init Function

– Called once to set up state

● Work Function

– Called forever

– Defines number of items popped from input stream, pushed to
output stream, peeked at from input stream

– Push/pop rates do not have to match

StreamIt Language: Pipeline

Averager(10)IntSource IntPrinter

Code Source: http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

void->void pipeline MovingAverage {
 add IntSource();
 add Averager(10);
 add IntPrinter();
}

http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

StreamIt Language: SplitJoin

Averager(n)

Split (DUP) Join (RR)

Averager(m)

Trender

float->float splitjoin
dualAverager(int n, int m) {
 split duplicate;
 add Averager(n);
 add Averager(m);
 join roundrobin;
}

float->int filter Trender{
 work pop 2 push 1 {
 float a = pop();
 float b = pop();
 if (a > b) { push(1); }
 else { push(0); }
 }
}

StreamIt Language: SplitJoin

● Split: divide stream into multiple streams
– Duplicate

– Round robin

● Join: combine streams into single stream
– Round robin

● Can specify flow rate from each input/output
filter

StreamIt Language: FeedbackLoop

Body (Anonymous)
DifferenceBypass

Split (RR)

Join (RR)

Identity

int->int feedbackloop
EdgeDetecter {
 join roundrobin(1, 1);
 body int->int filter {
 work pop 2 push 2 peek 2 {
 push(peek(0)-peek(1));
 push(peek(0));
 pop();
 pop();
 }
 }
 loop Identity<int>;
 split roundrobin(1, 1);
 enqueue(0);
}

StreamIt Language: FeedbackLoop

● Join: combine input and loop feedback

● Body: filter for forward operation

● Loop: filter for reverse operation

● Split: split forward operation output into output and loop feedback
input

● Enqueue: initial values on joiner feedback path

● Deadlock if loop filter output becomes empty

● Prequeue values with enqueue to ensure joiner always has input at
startup

● Immediate data dependency with slow body can slow execution of
feedback block

Overview

● Motivation
● Stream Programming
● StreamIt Language
● StreamIt Parallelization
● Conclusions

StreamIt Parallelization

● Structured Graph Exposes Parallelism
– Task parallelism (example Threads)

– Data parallelism (example Do All)

– Pipeline parallelism (example ILP)

● Target architectures vary
– Granularity

– Topology

– Communication

– Memory

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler

● Partitioning/Placement
– Coarsen Granularity

– Data Parallelize

– Software Pipeline

● Scheduling
● Code Generation (output C/Java code)

StreamIt Parallelization: Compiler
● Naïve Partitioning / Scheduling
● Fine-grained data parallelism

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler
● Large synchronization overhead

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler

● Ideal Partitioning
– Each filter has dedicated tile

– Each filter performs same amount of work

● Compiler Algorithm

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler
● Coarsen Granularity, Data Parallelization

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler
● Task Parallelization

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler
● Lower synchronization overhead

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler
● Software Pipeline

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

StreamIt Parallelization: Compiler

Image Source:http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

Streamit Parallelization: Scheduler

● Steady state remains same for each cycle
– Find steady state schedule at compile time

– All data rates known at compile time

– Solve system of linear equations to find steady
state schedule

● Find prologue schedule
● Low scheduling overhead at runtime

Conclusions
● Stream Programming

– Programmer does not need to focus on
concurrency

– Programmer does need to be aware of which
techniques run more efficiently in parallel

– Exposes task, data and pipeline parallelism

● Compiler can manage parallelism
– Choose granularity

– Perform load balancing

– Take care of concurrency issues

– Optimize for given architecture

References

● Language Reference

– http://groups.csail.mit.edu/cag/streamit/papers/streamit-lang-spec.pdf

● StreamIt Cookbook

– http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

● Presentations

– http://people.csail.mit.edu/mgordon/mgordon-phd-defense.pdf

– http://groups.csail.mit.edu/cag/streamit/talks/StreamIt-IBM-PL-Day-04.pdf

– http://research.microsoft.com/en-us/um/people/thies/thesis-defense.pdf

– http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html

– http://groups.csail.mit.edu/cag/streamit/talks/StreamIt-NEPLS-8-02.ppt

● Images and line of thought on some slides taken directly from presentations

http://groups.csail.mit.edu/cag/streamit/papers/streamit-lang-spec.pdf
http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf
http://people.csail.mit.edu/mgordon/mgordon-phd-defense.pdf
http://groups.csail.mit.edu/cag/streamit/talks/StreamIt-IBM-PL-Day-04.pdf
http://research.microsoft.com/en-us/um/people/thies/thesis-defense.pdf
http://groups.csail.mit.edu/cag/streamit/talks/pact03tutorial/index.html
http://groups.csail.mit.edu/cag/streamit/talks/StreamIt-NEPLS-8-02.ppt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

