8
HTTP/TCP Interaction

Although the Hypertext Transfer Protocol (HTTP) does not depend on any
particular transport protocol, nearly every implementation of HTTP uses the
Transmission Control Protocol (TCP). TCP was standardized in 1980, ten years
before the emergence of the Web. Early application-layer protocols built on
TCP differ markedly from HTTP. For example, Telnet is an interactive ap-
plication that uses a single TCP connection to transfer data between a client
and server over a period of time. In contrast, a Web client typically establishes
multiple TCP connections to retrieve a collection of resources from a Web
server. The File Transfer Protocol (FTP) maintains a single control connec-
tion between the client and server and transmits data on separate connections.
In contrast, HT'TP uses a single connection for transferring control and data.
Compared with the files transferred by FTP, most Web request and response
messages are relatively short. These unique characteristics of Web traffic have
important implications for the efficiency of TCP.

This chapter discusses the interaction between HTTP and TCP and the
implications for Web performance. First, we discuss how TCP implementations
use the expiration of timers to trigger many key operations, such as the re-
transmission of lost packets. Although these timers affect any application-level
protocol built on top of TCP, the characteristics of HT'TP traffic lead to more
dramatic performance effects on the Web than on earlier Internet applications.
Next we explore how the separation of functionality between the transport
and applications layers influences Web performance. Certain TCP mechanisms
were motivated by earlier application-level protocols, such as Telnet and Rlogin.
These features interact in subtle, and often negative, ways with HT'TP. Next we
discuss the performance and fairness implications of Web clients that have mul-
tiple TCP connections to the same Web server at the same time. For example,
a browser may establish multiple connections to download multiple embedded
images in a Web page. Busy Web servers must handle a large number of simul-
taneous TCP connections to a collection of different clients. We discuss ways
to reduce the overhead on Web servers of handling a large number of TCP
connections.

301

302 HTTP/TCP INTERACTION

8.1 TCP Timers

TCP implementations rely on timers to trigger key protocol operations, such
as the following:

e Retransmission of lost packets: The expiration of the retransmission
timer triggers a TCP sender to retransmit a (presumably) lost packet.

¢ Repeating the slow-start phase: Some TCP implementations force a
TCP sender to repeat the slow-start phase of congestion control after a
period of inactivity.

¢ Reclaiming state from a terminated connection: The TCP sender
that initiates the closure of the connection removes the state associated
with the connection after a period of time has elapsed.

In this section, we explain why the timers that control these three operations
have a significant influence on Web performance. Later, in Section 8.2.3, we dis-
cuss another timer that controls the transmission of delayed acknowledgments.

8.1.1 Retransmission timer

Web downloads sometimes stall for several seconds in a row, typically at the
beginning of the transfer. These delays often stem from the time required for
the TCP sender to detect that an Internet Protocol (IP) packet has been lost. In
this section, we explain how the creation of the TCP connection can be delayed
for several seconds as a result of a large initial retransmission timeout (RTO)
value. Then we explain why retransmission timeouts occur relatively often in
the middle of HT'TP transfers, compared with other Internet applications.

DELAY IN ESTABLISHING A TCP CONNECTION

From the user’s viewpoint, clicking on a hypertext link translates directly into
the display of the Web page in the browser window. Transparent to the user,
the Web browser proceeds through several steps to retrieve the Web page—
establishing a TCP connection, transmitting the HTTP request, receiving the
HTTP response from the server, and rendering the resource. Because Web
browsing is an interactive application, delay in any of these steps is visible to
the user. This is in sharp contrast to noninteractive applications, such as the
transfer of e-mail, in which the user does not expect an immediate reply. Al-
though Telnet and FTP are interactive, these applications have a clear separa-
tion between establishing the connection and transferring the data. The typical
user interacts with the remote machine for a relatively long period of time;
therefore, a few seconds of additional delay in establishing the TCP connection
and supplying a name and password do not necessarily have a considerable
effect on the user’s overall satisfaction.

8.1. TCP TIMERS 303

Server
N
Loss Loss Loss 0
g =z £ ¢
(%] (%] » 4;_
z
. w
Client
3 sec 6 sec 12 sec

Figure 8.1. Client retransmitting lost SYN packet to server

Establishing a TCP connection requires a three-way handshake—a SYN
from the client, a SYN-ACK from the server, and an ACK from the client.
In the absence of packet loss, the client can transmit the HTTP request after
one round-trip delay. However, the loss of the SYN or the SYN-ACK packet
introduces a longer delay. TCP senders have two ways to detect a lost packet—
duplicate acknowledgments and a retransmission timeout, as discussed in Chap-
ter 5 (Section 5.2.5). However, the receiver does not send duplicate acknowl-
edgments unless the TCP sender has transmitted multiple packets. At the be-
ginning of the connection, a TCP sender has not transmitted any data packets,
and the rate of packet transmission is limited by the small initial congestion
window. In the absence of duplicate acknowledgments, the TCP sender must
rely on the retransmission timer to detect a lost packet. Selecting the RTO
value is a delicate process. A large RTO results in high latency in responding
to lost packets, whereas a small RTO results in unnecessary retransmissions.
To balance these trade-offs, the TCP sender selects an RTO based on estimates
on the round-trip time (RTT) to the receiver.

However, at the beginning of a TCP connection, the sender has not accu-
mulated any RTT measurements. This complicates the selection of an RTO for
the initial packets of the connection. To address this problem, the TCP standard
prescribes that the sender start with a default RTO of three seconds [PA0O]. If
the SYN-ACK packet does not arrive after the first retransmission of the SYN
packet, the TCP sender increases the RTO from three seconds to six seconds
and continues to double the timeout value after each successive retransmis-
sion, as shown in Figure 8.1. The combination of the large initial RTO and the
exponential backoff avoids generating unnecessary retransmissions of the SYN
and SYN-ACK packets when the hosts have a large RTT. If the SYN or SYN-
ACK packet is lost, delaying the retransmission avoids overloading the already
congested network. The conservative policy for retransmitting lost SYN and
SYN-ACK packets does not have much effect on noninteractive applications.

304 HTTP/TCP INTERACTION

Losing one or more SYN or SYN-ACK packets has a significant influence
on Web performance. The loss of two successive SYN packets would result in a
total delay of nine seconds before the transmission of the third SYN packet. Ar-
guably, the likelihood of losing one or more SYN or SYN-ACK packets should
be quite small. However, the advent of the Web has resulted in substantial
network congestion and, consequently, higher packet loss rates (e.g., 5% or
more) [Pax99]. Despite the deployment of high-speed links in many parts of
the Internet, congestion still occurs on critical links. The links that connect
a company, university, or even an entire country to the Internet may be very
congested, particularly during the busiest hours of the day. The links between
different Internet service providers are often heavily congested. Even if the net-
work is lightly loaded, a busy Web server may lose SYN packets. The operating
system on the server machine maintains a queue of pending TCP connections.
If this queue is full, new SYN packets are discarded.

The high delay affects the behavior of Web users. The frustrated user
may terminate the request by clicking on the Stop button on the browser. The
user may then click on the Reload button to repeat the request. When the
user clicks on the Stop button, the browser reacts by instructing the operating
system to close the underlying TCP connection, as discussed in more detail in
Section 8.2.1. When the user then clicks on the Reload button, the browser
immediately initiates the creation of a new TCP connection. The operating
system transmits a new SYN packet to the server and sets the RTO to its initial
value (say, three seconds). If the new SYN packet reaches the server, then the
TCP connection would be established much more quickly than waiting for a
three-second or six-second timer to expire. The Web user’s abort-and-reload
behavior effectively triggers an immediate “retransmission” of the SYN packet.
The user may also click on the Reload button without clicking on the Stop
button. Clicking on the Reload button triggers both the termination of the
existing TCP connection and the establishment of a new connection.

Stopping and restarting a stalled transfer typically reduces user-perceived
latency, at the expense of higher load on the server and the network. For exam-
ple, the operating system underlying a busy Web server may discard multiple
SYN packets from different clients in a short period of time. If the users re-
act by repeating their requests, each of these clients would send another SYN
packet to the server. This exacerbates the already heavy load on the server
machine. Similarly, user behavior can inflate the load on a congested network
link. A heavily loaded link results in lost packets. Because most Web transfers
are short, a relatively large fraction of the lost packets are SYN or SYN-ACK
packets. If the lost packet causes the user to stop and restart the request, the
client transmits a second SYN packet in a short period of time. This increases
the amount of traffic that travels over the already congested link.

8.1. TCP TIMERS

305
Retransmission timeout
Server
> x/ g\ T X
= O [}) O
o </ & 2 T
ng o Q
[=3 [} S f‘
0 \ [a) o0 0
X) 9)
2 "\ % 5
)ﬁ_ 6 Loss ?&- %
i w P4 o« 4
Client

Figure 8.2. Client sending a single duplicate ACK to the server

DELAY IN THE MIDDLE OF A WEB TRANSFER

Compared with the beginning of a connection, long retransmission timeouts

are less likely to occur in the middle of transferring a Web response for two
reasons:

e Smaller RTO value: The TCP sender gradually refines the RTO value
by observing the delay experienced by data packets. Over time, the RTO
value becomes closer to the actual RT'T between the sender and receiver.
Consider a sender and a receiver with an RTT of 200 ms. At the beginning
of the connection, the TCP sender has a three-second RTO. The TCP
sender selects the RTO based on the average and variance of the RTT.
Eventually, the RTO may drop to 250 or 300 ms.

¢ Duplicate acknowledgments: Retransmission timeouts are less likely to
occur once the TCP sender starts transmitting data. As the data packets
arrive, the TCP receiver sends acknowledgment packets that reflect the
number of contiguous bytes that have arrived so far. Following a packet
loss, the acknowledgment number does not increase for subsequent ACK
packets. Upon receiving these duplicate ACK packets, the sender infers
that the earlier data packet has not reached the receiver. The reception of

three duplicate ACKs triggers the TCP sender to retransmit the missing

packet without waiting for the retransmission timer to expire, as discussed
in Chapter 5 (Section 5.2.5).

Both of these positive effects become more significant as the TCP sender trans-
mits more data. The RTT estimate becomes more accurate as the hosts ex-
change more data, and the likelihood of duplicate acknowledgments increases
as the TCP sender achieves a larger congestion window.

However, most Web responses involve a relatively small amount of data,
in the range of 8 to 12 KB. These short transfers spend most, if not all, of their
time in the slow-start phase of congestion control. The slow-start phase begins
with a small initial congestion window of one or two packets, as discussed in
Chapter 5 (Section 5.2.6). With a small congestion window, the likelihood of

306 HTTP/TCP INTERACTION

Loss detected by dup—ACKs Loss detected by RTO
P RN /

Congestion window

3 B E—— 3
Retransmission
timeout

Slow—start threshold

= Slow-start phase Slow—start phase

Time

Figure 8.3. Repeating the slow-start phase after a retransmission timeout

successfully delivering multiple packets after a loss is very low. The TCP re-
ceiver is unlikely to generate the three duplicate ACKs necessary to trigger a
fast retransmission of the lost packet [BPS198]. For example, the loss of the first
packet of a response message would result in a single duplicate acknowledgment
triggered by the reception of the second packet, as shown in Figure 8.2. The
small congestion window precludes the server from transmitting any additional
packets until receiving an acknowledgment for the first packet. Waiting for
the retransmission timer to expire stalls the transfer of data from the server. In
addition, retransmission timeouts force the TCP sender to reset the size of con-
gestion window to its small initial value, as shown in Figure 8.3. Retransmission
timeouts can result in significantly long delays for Web transfers. Stopping and
restarting the transfer may result in a faster response, compared with waiting
for the retransmission timer to expire.

8.1.2 Slow-start restart

Persistent connections offer an attractive alternative to establishing a sepa-
rate TCP connection for each Web transfer. Avoiding the slow-start phase of
TCP congestion control is one of the purported advantages of reusing an exist-
ing TCP connection, as discussed earlier in Chapter 7 (Section 7.5). However,
sending a response message on a previously idle persistent connection generates
a large burst of packets. To avoid overloading the network, the TCP specifica-
tion requires a TCP sender to repeat the slow-start phase of congestion control
after a period of inactivity. Several techniques have been proposed to avoid
repeating the slow-start phase without overloading the network.

8.1. TCP TIMERS 307

IDLE PERSISTENT CONNECTIONS

A Web client often downloads multiple resources from the same Web site in a
short period of time. For example, the user may download a Web page that
contains multiple embedded images. The browser requests these images from
the server after parsing the container HTML file. In addition, a user may click
on hypertext links to browse through multiple pages at the same server. With
persistent connections, these HT'TP transfers can travel over a single TCP con-
nection. The transfers may experience higher throughput by having a larger
congestion window. Suppose a client requests an HTML file, followed by re-
quests for four embedded images. The transfer of the HTML file starts with an
initial congestion window of one or two packets. The congestion window grows
as the transfer proceeds through the slow-start phase. By reusing the connec-
tion, the transfer of the embedded images benefits from the larger congestion
window. In fact, the congestion window may continue to grow as the server
transfers multiple responses.

However, using a large congestion window may overload the network if the
persistent connection has been idle for a period of time. Consider a user who
downloads a Web page from a server and, after spending five seconds reading
the page, retrieves another page from the same server. Assume, for the time
being, that the client and the server have both decided to retain the connection.
Network congestion may have changed substantially during the five-second idle
period. While this TCP connection was inactive, other TCP connections on
the same path may have increased their congestion windows to consume the
available bandwidth. Consider the simple case of a busy link that carries traffic
for five active TCP connections with the same round-trip times. On average,
each of the five connections has a throughput of around 20% of link capacity. If
one of these connections is idle for several seconds, the other four connections
would start sending more aggressively until they each consume around 25% of
the capacity.

Allowing the previously idle connection to transmit at its old rate could
introduce substantial congestion. The connection would immediately start send-
ing data at a rate that would consume 20% of the link capacity, while the other
four connections continue transmitting data at 25% of link capacity. This gen-
erates a large amount of additional traffic—20% above the link capacity. Many
of the packets traversing the congested link would be lost. In fact, packet losses
may force several of the connections to reduce their sending rates. After the
connections lower their sending rates, the link may become underutilized. The
underutilization persists while the connections gradually increase their con-
gestion windows. In addition to degrading overall performance, sending too
aggressively may lower the throughput of the aggressive connection as well.
The network congestion may cause the connection to experience a high rate of
packet loss, forcing the retransmission of one or more packets.

308 HTTP/TCP INTERACTION

REPEATING THE SLOW-START PHASE

To avoid generating a sudden burst of packets, the TCP sender should transmit
less aggressively after an idle period. The slow-start phase of congestion control
was designed precisely to avoid sudden and unexpected bursts of network traffic.
During the slow-start phase, the TCP sender increases its congestion window
and attempts to estimate its fair share of the bandwidth on its path through
the network. Allowing a previously idle connection to use a large congestion
window is similar to allowing a new connection to start with a large initial
congestion window. The burst of traffic could overwhelm the network links and
cause high packet-loss rates. To avoid these performance problems, the TCP
specification requires a connection to repeat the slow-start phase following an
idle period. This is referred to as the slow-start restart mechanism.

A precise definition of the slow-start restart mechanism requires the clarifi-
cation of two key issues: the beginning of an idle period and the resetting of the
congestion window. The idle period starts once the TCP sender stops transmit-
ting data and all previous data packets have been successfully acknowledged
by the receiver. After receiving the last acknowledgment, the TCP sender sets
a timer. Once the timer expires, the sender resets the congestion window to
its initial value of one or two maximum-size packets. The TCP sender uses the
current RTO value to define the duration of the idle period. That is, if the
application does not introduce any new data during the RTO period, the un-
derlying TCP sender resets the congestion window and repeats the slow-start
phase of congestion control.

Slow-start restart would occur if a connection is idle for longer than a
few RTTs—typically a few seconds, at most. Most automatically generated
requests for embedded resources would arrive within this time interval. How-
ever, persistent connections may also handle requests generated by users as
they browse through multiple Web pages at the same site. Users frequently in-
troduce longer delays between successive requests. The characteristics of these
interrequest times are discussed in more detail in Chapter 10 (Section 10.5.3).
The larger spacing between user-generated requests can trigger the slow-start
restart mechanism. Repeating the slow-start phase reduces the performance
gains achievable with persistent connections. A server cannot fully exploit a
high-bandwidth path to the client if successive requests must start with a small
congestion window. However, repeating slow start is important for the overall
health of the network.

REDUCING THE SLOW-START RESTART PERFORMANCE PENALTY

The slow-start restart mechanism prevents the previously idle TCP connection
from generating a large burst of traffic that would congest the network. Several

8.1. TCP TIMERS 309

techniques have been proposed to reduce or avoid the performance penalties
associated with slow-start restart [Hei97):

¢ Disabling slow-start restart: The Web server could disable the use
of the slow-start restart mechanism, at the risk of allowing a previously
idle connection to generate a large, unexpected burst of traffic. The risk
is reduced if the server closes connections after a short idle period. For
example, the server may close a connection that has been inactive for more
than 15 seconds to limit the total number of connections, as discussed later,
in Section 8.4.2.

¢ Using a larger slow-start restart timeout: The operating system un-
derlying the Web server could be configured to use a larger timeout pa-
rameter for triggering slow-start restart. However, the larger the timeout
parameter, the more likely it is that the connection’s previous congestion
window is inconsistent with the current status of the network.

e Gradually decreasing the congestion window: Rather than an all-or-
nothing solution, the TCP sender could gradually decrease the congestion
window during the idle period. The TCP sender could reduce the conges-
tion window in proportion to the length of the idle period. This adaptive
approach becomes more conservative with the increasing uncertainty about
prevailing network conditions.

e Pacing the transmission of packets: To avoid generating a burst of
packets, the TCP sender could pace the transmission of packets into the
network. Suppose the congestion window allows the sender to transmit four
packets. Transmitting all four packets back-to-back would generate a large
burst of traffic. Instead, the sender could introduce some delay after each
packet transmission. This would reduce the likelihood of overloading the
network links on the path to the receiver, while still allowing the sender
to use the four-packet congestion window.

The TCP implementation on the Web server machine could employ a combi-
nation of these techniques. For example, the TCP sender could use a larger
timeout, gradually decrease the congestion window, and pace the transmission
of packets.

8.1.3 The TIME_WAIT state

Busy Web servers handle a high rate of requests for new TCP connections.
Having a large number of TCP connections consumes memory resources and
introduces overhead in processing incoming packets. Ideally, the operating sys-
tem could reclaim these resources as soon as the connection closes. However,
TCP requires one of the two hosts to retain information about the closed con-
nection for a period of time. In this subsection, we explain why one host must
enter the so-called TIME_WAIT state and why this responsibility often falls

310 HTTP/TCP INTERACTION

Server C
P P
gz Iy
)
e o0 q‘é 24
Q Loss
o
o\ = N4
_ &g\T 2
Client

Retransmission timeout

Figure 8.4. Loss and retransmission of final ACK packet from the server

upon the Web server rather than the client. Then we discuss several proposals
for reducing the overhead of the TIME_WAIT state on Web servers.

RETAINING INFORMATION ABOUT CLOSED CONNECTIONS

Retaining information about closed TCP connections introduces significant
overhead on a busy Web server. Consider a Web server that closes a con-
nection after sending an HTTP response to the client. Closing the connection
initiates a four-way handshake, starting with the transmission of a FIN packet,
as discussed in Chapter 5 (Section 5.2.3). Upon receiving the FIN packet, the
TCP implementation at the client sends an acknowledgment packet. Then the
client reads the HTTP response. After the last byte of the response message,
the client reads an end-of-file (EOF) character that signifies that the server
has closed its end of the connection. The client then closes its end of the con-
nection, which triggers the transmission of a FIN packet. Upon receiving the
client’s FIN, the TCP implementation at the server sends an ACK, completing
the handshake. After receiving the ACK, the client knows that the connection
has been terminated. However, the server has no way of knowing if the client
ever received the ACK packet.

Suppose that the server’s final ACK packet was lost in the network, as
shown in Figure 8.4. If the ACK packet was lost, the client would eventually
experience a retransmission timeout. After the timeout, the client would send
its FIN packet again. If the retransmitted FIN packet is lost, the client would
experience another timeout and send the FIN packet again. Because the server
does not know whether or not its ACK has reached the client, the server does
not know if the ACK packet must be transmitted again. In the meantime,
the server cannot delete its information about the TCP connection. Suppose
that the server removes all information about the connection, under the false
assumption that the client has received the ACK packet. Later, when a retrans-
mitted FIN packet arrives, the server would not know that this packet belonged
to the closed connection. Thinking that the FIN packet was sent erroneously,

8.1. TCP TIMERS 311

the server would send an RST (reset) packet back to the client, rather than
retransmitting the ACK packet.

A more serious situation arises when the connection has one or more out-
standing packets in the network. Suppose that the server has received the entire
request message and the client has received the entire response message. A du-
plicate (retransmitted) packet from this connection may remain in the network.
That is, a packet may have been sent more than once, with one copy reach-
ing the recipient and the other copy still traveling through the network. This
packet may eventually reach the receiver. The handling of the duplicate packet
depends on the status of the connection between the two hosts, as follows:

e Connection is still open: Suppose the duplicate packet arrives while the
TCP connection is still open. The receiver inspects the sequence number
of the packet and recognizes that this data has already been received. The
receiver discards the duplicate packet.

e Connection has been closed and no new connection exists: Suppose
that the connection has been closed and the two hosts have not established
a new TCP connection. When the packet arrives, the operating system on
the receiving machine inspects the port numbers in the TCP header to
identify the connection associated with the data. No active connection
matches these port numbers, so the receiver discards the packet.

e Connection has been closed and a new connection exists: Suppose
that the connection has been closed and the two hosts have established a
new connection using the same pair of port numbers. When the duplicate
packet arrives, the port numbers are inspected by the operating system on
the receiving machine. The port numbers match an existing connection,
and the data is directed to the application associated with the new con-
nection. This is a mistake, because the duplicate packet does not actually
belong to this new connection.

To prevent the receiver from associating the duplicate packet with the wrong
application, the two hosts must have a way to avoid creating a new connection
with the same port numbers, at least for some period of time after the closure
of the previous connection.

To prevent the establishment of a new connection with the same port
numbers, at least one of the hosts must remember that the previous connection
existed. The TCP specification assigns this responsibility to the host that sends
the first FIN packet. On this host, the TCP connection enters the TIME_WAIT
state. The operating system maintains information relating to the connection
to retransmit the final ACK packet, if necessary, and to prevent creation of a
new connection with the same IP addresses and port numbers. The connection
must stay in the TIME_WAIT state long enough that no outstanding packets
remain in the network. This is very difficult because IP does not provide a

312 HTTP/TCP INTERACTION

limit on the worst-case delay for delivering a packet. In practice, the time-to-
live (TTL) field in the IP packet header should ensure that a packet does not
remain in the network indefinitely, as discussed in Chapter 5 (Section 5.1.4).
The 8-bit field permits a maximum TTL value of 255 seconds.

TCP requires the host to remain in the TIME_WAIT state for twice
the mazimum segment lifetime (MSL), an estimate of the worst-case delay.
The TCP standard specifies that implementations should use an MSL of 2
minutes [J. 81], though common implementations use 30 seconds, 1 minute,
or 2 minutes. On the one hand, a small MSL reduces the duration of the
TIME_WAIT state, which reduces the amount of system resources devoted
to retaining information about closed TCP connections. However, a small MSL
also increases the likelihood that a duplicate packet remains in the network.
Likewise, a small MSL increases the likelihood that the sender is unable to re-
transmit a lost final ACK packet. On the other hand, a large MSL results in a
long stay in the TIME_WAIT state. This results in a potentially large number
of connections in the TIME_WAIT state at the same time, which could con-
sume significant system resources on a busy Web server. In addition, a large
MSL value could actually limit the achievable rate of communication between
the two hosts.

Suppose a client creates a TCP connection with port 1025 to a server
running on port 80 on a remote host. After sending the FIN packet to close
the TCP connection, the server enters the TIME_WAIT state for four minutes.
After receiving the ACK from the server, the client terminates the connection.
The client may wish to establish another connection to the same server to
request another resource. This new connection must use a different client port
(such as 1026) because the server is still in the TIME_WAIT state for the old
connection. The TCP header has a 16-bit field for the port number, which
restricts the number of different ports that can be used by the client during the
four-minute period. In practice, this would not impose a significant limitation
on a typical Web browser. However, a busy proxy may need to establish TCP
connections to a popular server at a very high rate. The restriction is even
more significant if the proxy is configured to send all requests to a downstream
proxy. The inability to establish new connections with the old port numbers
limits how often the proxy can send requests to the next proxy in the chain.

ErreEcT OF TIME_WAIT ON WEB SERVERS

Web servers often initiate the closure of a TCP connection and bear the over-
head associated with the TIME_WAIT state. First, consider the case in which
the client and the server do not maintain a persistent connection. In this situa-
tion, the server would typically close the connection (by sending a FIN packet)
immediately after sending the HT'TP response to the client. Second, consider
the case in which both the client and the server keep the TCP connection open.

8.1. TCP TIMERS 313

In this scenario, eventually either the client or the server closes the TCP con-
nection. The server often has a stronger incentive to close the connection. For
example, a busy Web server cannot afford to maintain a persistent connection
for every client. In fact, a Web server typically applies an application-level time-
out to close a TCP connection after a period of inactivity, as discussed later,
in Section 8.4.2. In contrast, a Web browser may have little incentive to close
a persistent connection because reusing the existing connection would reduce
the latency experienced by the user over establishing a new connection.

In either of these two scenarios, the server closes the connection first and
hence must enter the TIME_WAIT state. The situation becomes more compli-
cated when the client is an intermediary, such as a proxy. A busy proxy has
connections to a large number of clients and servers. A proxy may have as much
of an incentive to close the connection as the server, if not more. If the proxy
closes the connection, then the proxy incurs the burden of the TIME_WAIT
state, rather than the server. The TIME_WAIT state imposes a heavy burden
on busy proxies as well. In general, the TIME_WAIT state introduces an un-
fortunate trade-off—because busy hosts have an incentive to close connections,
the busy hosts must bear the overhead of the TIME_WAIT state.

The overhead of the TIME_WAIT state is exacerbated by the fact that
the TCP connections are relatively short-lived because most Web responses
are small. Suppose a client requests a single resource from a Web server. The
server may spend a few seconds sending the response message. After closing the
connection, the server must stay in the TIME_WAIT state for four minutes.
This is an extremely long time relative to the period that the connection was
open. Earlier Internet applications, such as Telnet and FTP, typically used
TCP connections for a longer period of time. Compared with an FTP server, a
Web server has a larger proportion of its TCP connections in the TIME_WAIT
state. The use of persistent connections partially addresses the problem. Using
a single TCP connection for multiple HTTP transfers reduces the total number
of TCP connections opened, and closed, at the server. This, in turn, reduces
the number of TCP connections in the TIME_WAIT state. However, a busy
Web server may still have a large number of connections at a time in the
TIME_WAIT state.

REDUCING TIME_WAIT OVERHEAD

Reducing the burden of the TIME_WAIT state is extremely important for high-
performance Web servers. Techniques for reducing this overhead fall into two
main categories—lowering the system resource requirements for TIME_WAIT
connections and shifting the responsibility for the TIME_WAIT state to Web
clients. The operating system must retain information about each connection in
the TIME_WAIT state. Storing this information consumes memory that could
be used for other purposes, such as caching frequently accessed Web resources.

314 HTTP/TCP INTERACTION

Server
52 &
</ L fd
oo 0 O
c
o <
N\ =z
_ g\ = 2
Client

Figure 8.5. Client sending RST to free server from the TIME_WAIT state

Fortunately, the operating system does not need to retain as much informa-
tion for TIME_WAIT connections as for active connections. Modern operating
systems reduce the memory requirements to the bare minimum necessary for
the operating system to retransmit the final ACK packet and to prevent the
creation of a new connection with the same IP addresses and port numbers.
Having a large number of connections in the TIME_WAIT state also increases
the overhead for the operating system to check for expired TCP timers, such
as the retransmission timer. Most operating systems check for expired timers
by periodically scanning the list of TCP connections. Placing the TIME_WAIT
connections at the end of this list reduces the processing time required to scan
the list. Reducing the memory and processing requirements for TIME_WAIT
connections results in a substantial increase in the throughput of busy Web
servers [AD99)].

Despite the benefits of reducing the memory and processing requirements,
the TIME_WAIT state still imposes an overhead on Web servers. Several tech-
niques have been proposed that shift the responsibility for the TIME_WAIT
state to the client [FTY99], which presumably handles a relatively smaller
number of TCP connections, as follows:

e Change TCP: The specification of TCP could be changed to have the
recipient of the first FIN packet incur the burden of the TIME_WAIT state.
For example, suppose the Web server closes a TCP connection and sends
a FIN packet to the client. After receiving the server FIN, the client TCP
implementation could transition to the TIME_WAIT state. To ensure that
the server does not enter the TIME_WAIT state, the client could send an
RST packet to the server, as shown in Figure 8.5. Receiving an RST packet
triggers the operating system at the server to leave the TIME_WAIT state
and reclaim the memory resources associated with the TCP connection.
An alternative approach involves changing the procedure for establishing
a TCP connection to require the two hosts to negotiate who should handle
the TIME_WAIT state upon connection closure.

8.2. HTTP/TCP LAYERING 315

e Change HTTP: The specification of HTTP could be changed to have
the client initiate the closure of the TCP connection. For example, a new
response header could allow the server to instruct the client to close the
connection after receiving the complete response message. A new request
header could allow the client to express its willingness to assume respon-
sibility for closing the connection. For example, the client could close the
TCP connection after automatically downloading the embedded images
in a Web page. However, relinquishing control to the client may not be
an appropriate solution in practice. The client may not have an incentive
to close the connection, or to assume responsibility for the TIME_WAIT
state.

However, each of these approaches requires changes to TCP or HTTP. Nei-
ther of the proposed approaches offers an attractive solution to the perfor-
mance problems associated with the TIME_WAIT state. Instead, administra-
tors of busy Web servers typically modify the operating system to reduce the
TIME_WAIT timeout (e.g., five seconds). This reduces the TIME_WAIT over-
head, at the risk of establishing a new TCP connection with the same port
numbers.

8.2 HTTP/TCP Layering

The transfer of Web resources draws on the application-layer functions provided
by HTTP and the transport-layer functions provided by TCP. In some cases, it
is not clear which layer should perform a certain function. This section discusses
three examples in which functions implemented at the transport layer have a
significant effect on Web performance:

e Aborted HTTP transfers: Because the HTTP protocol does not have
a mechanism for terminating an ongoing transfer, aborting an HTTP re-
quest requires closing the underlying transport connection, as discussed in
Section 8.2.1.

e Nagle’s algorithm: Nagle’s algorithm limits the number of small packets
transmitted by a TCP sender, which may delay the transfer of the last
packet of an HTTP message, as discussed in Section 8.2.2.

e Delayed acknowledgments: The TCP receiver may delay transmission
of an acknowledgment in the hope of piggybacking the acknowledgment
on an outgoing data packet, at the expense of increasing the latency in
transferring an HTTP message, as discussed in Section 8.2.3.

Handling aborted transfers at the transport layer avoids the need for HTTP to
have an intricate relationship with any particular transport protocol. Nagle’s
algorithm and delayed acknowledgments were included in implementations of

316 HTTP/TCP INTERACTION

TCP to reduce the overhead of transferring data for interactive applications
such as Telnet and Rlogin.

8.2.1 Aborted HTTP transfers

A user may abort an ongoing Web transfer by clicking on the Stop button or
by clicking on a hypertext link to retrieve another page. Abort operations are
a common part of conventional Web browsing. In some cases, the browser may
display the contents of a page as the response message arrives from the server.
This allows the user to read part of the page and, perhaps, click on a hypertext
link before the page has arrived in its entirety. In particular, the user may click
on a hypertext link before all of the embedded images have been downloaded.
In other cases, a user may interrupt a transfer that is proceeding slowly and
then hit the Reload button to attempt to download the page again. A user with
slow network access, such as a telephone modem, may be more likely to abort
Web transfers. Transfers of large resources are likely to be aborted before they
complete. In this subsection, we explain why aborting a Web transfer requires
closing the underlying transport connection and discuss the implications on
Web performance.

ABSENCE OF AN ABORT MECHANISM IN HTTP

HTTP does not provide a way for the client to communicate its desire to
terminate the ongoing transfer. The notion of aborting a request lies at the
boundary between the transport and application layers. Including an abort
mechanism in HTTP would have been difficult to do without specifying the
interaction with the underlying transport protocol. Although Web transfers
typically employ TCP, the HTTP specification is divorced from the details
of any particular transport protocol. Other application-level protocols, such as
Telnet, have faced the same challenges. Telnet chose a different solution. During
a Telnet session, a user can type cntl-C or the Delete key to abort the current
command. The sender can use the urgent pointer field in the TCP header
to draw the immediate attention of the receiver, as discussed in Chapter 5
(Section 5.2.7). This avoids the need for the receiver to process the previous
bytes of the stream. However, this optimization is tied closely to TCP.
HTTP/1.1 could have followed a similar approach by introducing an abort
request method. However, introducing an abort request would complicate the
handling of pipelined requests. Suppose that a client has sent several pipelined
requests on a persistent connection, followed by an abort request on the same
connection. The server would need to read ahead in the list of pipelined requests
to learn that the client has requested an abort. If the client pipelines several
requests, either the server would have to abort all of the pending requests or
the client would need to indicate which requests should be aborted. Addressing

8.2. HTTP/TCP LAYERING 317

these problems would have introduced substantial complexity to the protocol.
Thus the specification of HTTP/1.1 does not include an abort mechanism.

Consequently, a Web client has no effective way to abort an ongoing HTTP
transfer short of terminating the underlying transport connection. Consider a
user that aborts the transfer of a 20 MB file after 5 MB have arrived. The
client has two choices: terminating the TCP connection or receiving 15 MB
of unnecessary data. Retrieving extra data imposes a burden on the network
and consumes bandwidth that could be used to satisfy the user’s next request.
This increases user-perceived latency. Hence, most Web client implementations
choose to terminate the TCP connection.

EFFECT OF ABORT OPERATIONS ON WEB PERFORMANCE

Aborting the TCP connection has important implications for Web perfor-
mance. Consider an HTTP /1.1 browser that has a persistent connection to
an HTTP/1.1 server. After retrieving an HTML file, the browser generates
a series of pipelined requests for the various embedded images. Suppose that
while the server is transmitting these images, the user clicks on a hypertext
link to access another Web page at the same site. The browser terminates the
TCP connection to abort the transfer of the embedded images. Terminating the
TCP connection avoids the transfer of the remainder of the embedded images.
However, the user must wait for the browser to establish a new TCP connec-
tion to the server before the next Web page can be retrieved. This requires the
typical three-way handshake to open the new connection and the repetition of
the TCP slow-start phase.

Aborted transfers can introduce additional problems when the HTTP re-
quest has a side effect. For example, the user’s request could create a new
resource, increment a variable, or trigger a script that purchases a product at
an e-commerce site. If the TCP connection is terminated before the browser
receives the server’s response message, then the user does not know whether
the request was completed at the server or not. HT'TP does not provide any
way for the server to unilaterally contact the client to indicate whether the re-
quest was processed. The Web site may maintain additional state that enables
the client to determine whether the previous request was processed. Suppose a
user visits an e-commerce site and sends a request that would add an item to a
virtual shopping basket. Upon aborting the request, the user may not know if
the item was successfully added to the basket. The Web site may allow the user
to visit a Web page that displays the current contents of the shopping basket.
This would allow the user to determine whether the previous request had com-
pleted before the TCP connection was aborted. Alternatively, the HTML form
could include a unique transaction number that enables the script processing
the request to recognize whether the transaction has already been performed.

318 HTTP/TCP INTERACTION

Abort operations tighten the coupling between pipelined requests on the
same TCP connection. Aborting one request in the pipeline requires aborting
all of the pipelined requests that have not been processed yet. For example,
aborting the downloading of a Web page terminates the transfer of all of the
embedded images. This captures the intent of the user to abort the transfer of
the entire page, rather than the downloading of a single Web resource. However,
consider the case of a proxy that pipelines requests from two clients on a single
persistent connection to a Web server. The proxy issues a request on behalf of
client A, followed by a request on behalf of client B. If client A aborts its request,
then the proxy has two choices. The proxy could keep the connection open and
receive the server’s entire response to the first request. This is wasteful because
client A does not want to receive this data. Alternatively, the proxy could abort
the connection. This would require the proxy to open a new connection and
send client B’s request a second time. Neither option is attractive. The proxy
cannot avoid this problem without having a separate TCP connection to the
server on behalf of each client.

The user-level abort operation does not immediately stop the transfer of
data from the server. Consider a browser communicating directly with a Web
server. When the user clicks on Stop, the browser initiates termination of the
TCP connection by sending a FIN or RST packet to the server. In the meantime,
the server continues to send data to the client. Depending on the propagation
delay and the size of the Web response, the entire response may be transmitted
before the server receives the RST/FIN packet. The problem is exacerbated
when the client sends the request via an intermediary, such as a proxy. In this
case, the HTTP transfer involves a TCP connection between the client and the
proxy and a second TCP connection between the proxy and the server. Suppose
that the server-proxy path has high bandwidth relative to the proxy-client path.
This is a common scenario when the client has a low-speed modem. Because of
the mismatch in network bandwidth, the transfer between the server and the
proxy may proceed much more quickly than the transfer between the proxy
and the client.

Consider a client that requests a 20 MB resource and aborts the transfer
after receiving 5 MB of the response. The proxy may have received the entire
resource from the server. The transfer of the last 15 MB is wasted, unless the
proxy receives another request for the resource in the near future. If the client
had communicated with the server over its slow connection, rather than through
a proxy, the server would not have sent the additional 15 MB. Flow control on a
single TCP connection between the client and the server would have prevented
the server from sending so aggressively. Preventing the transfer of excess data
requires some coupling between the server-proxy and proxy-client connections.
The proxy could limit how much data it reads from the connection to the server.
By not reading the data in the receive buffer, the proxy reduces the receiver
window of the TCP connection. Reducing the receiver window size limits how

8.2. HTTP/TCP LAYERING 319

much data the server can transmit. Deciding how much data to read from the
receive buffer introduces a fundamental tension between avoiding excess traffic
for aborted transfers and reducing latency for normal transfers.

DETAILS OF ABORTING THE TCP CONNECTION

The browser aborts an ongoing data transfer by invoking a system call to close
the connection to the Web server. Depending on the browser implementation
and the operating system, the system call may generate either a FIN or an RST
packet. Assume that the system call triggers the transmission of a FIN packet.
Upon receiving the FIN packet, the operating system on the server machine
delivers an EOF to the server application. The operating system continues to
transmit data from the send buffer to the remote client. After reading the EOF,
the server stops writing new data into the send buffer. The data already in the
send buffer and in the network would be delivered to the machine running
the browser. Whether the browser application sees this additional data or not
depends on how the connection was closed. If the browser has closed both
the reading and writing ends of its connection, the operating system would
discard the data. If the read direction of the connection remains open, then the
operating system would deliver the data to the browser application. Continuing
to receive data may be useful if the browser plans to cache the partial contents
to satisfy future user requests.

Some UNIX implementations do not allow applications to initiate the
transmission of an RST packet. For these systems, an abort would generate
a FIN packet, whereas other operating systems may trigger an RST packet.
Upon receiving an RST, the operating system on the server machine discards
any remaining outgoing data for the connection, including data that the server
application has already written into the send buffer. This is both good and bad.
On the positive side, resetting the TCP connection avoids the transfer of addi-
tional data from the server. In addition, the RST packet causes the operating
system on the server machine to discard any data residing in the receive buffer,
rather than allowing the receiving application to read the data. This would ob-
viate the need for the server to read any pipelined HTTP requests that might
reside in the receive buffer. On the negative side, an RST does not close the
connection in a clean manner. For example, suppose that some of the packets
sent by the server machine had not reached the receiver. After receiving an
RST, the operating system on the server machine would not retransmit these
lost packets.

8.2.2 Nagle’s algorithm

Interactive applications such as Rlogin and Telnet typically generate many
small packets to transmit user keystrokes and short responses. Nagle’s algo-
rithm reduces the number of small packets by delaying the transmission of

320 HTTP/TCP INTERACTION

data [Nag84]. After discussing the motivation for limiting the number of small
packets, we describe how Nagle’s algorithm degrades the performance of Web
transfers, particularly under persistent connections. Then we explain how the
Web server can prevent the transmission of small packets even when Nagle’s
algorithm is disabled.

REDUCING THE NUMBER OF SMALL PACKETS

Consider the Telnet application that allows a user to interact with a machine in
another location. This application coordinates the transfer of user keystrokes
to the remote machine and the transfer of the machine’s responses back to
the user. Quick responses are necessary to give the user the illusion of inter-
acting directly with the remote machine. However, the TCP sender underly-
ing the Telnet application should not generate a separate IP packet for each
keystroke. Otherwise, each keystroke would result in a 41-byte packet—a 20-
byte IP header, a 20-byte TCP header, and 1 byte of data. Sending 41 bytes
for every byte of data would introduce significant overhead, resulting in heavy
congestion in the network. After receiving data from the application, the oper-
ating system should wait to accumulate additional data before transmitting a
packet. Interactive applications are not tolerant of latency; therefore the oper-
ating system should not delay the transmission for very long. Nagle’s algorithm
addresses this trade-off. The algorithm ensures that the TCP sender transmits
at most one small packet per RTT. In this context, a “small” packet is a packet
containing fewer bytes than the maximum segment size (MSS) for the TCP
connection (e.g., 536 or 1460 bytes).

Consider a TCP sender that has transmitted a packet and is waiting for
an acknowledgment from the receiver. The TCP sender does not transmit any
small packets until all outstanding acknowledgments are received. By this time,
the sender may have accumulated additional data. On a wide-area connection
with a large RTT, Nagle’s algorithm avoids having multiple short packets in
flight at the same time. On a local-area connection with a small RTT, the ac-
knowledgment packets from the receiver almost always arrive before the sender
has new data to transmit. Limiting the number of short packets in flight would
not introduce any extra delay before sending the next data packet. In addi-
tion, Nagle’s algorithm would not affect bulk-transfer applications because the
transmission of a large file typically results in full-size segments. The approach
has the most influence precisely when it is needed—for interactive applications
communicating over a connection with a large RTT.

NAGLE’S ALGORITHM AND PERSISTENT CONNECTIONS

Nagle’s algorithm can have a negative effect on Web performance when Web
transfers result in the transmission of small TCP segments. Consider a Web

8.2. HTTP/TCP LAYERING 321

Response 1 Response 2

[e e NN N

Time

Figure 8.6. Server transmitting full-size packet containing end of response

server that transmits an HTTP response message by writing the response
header followed by the response body, using two separate system calls. The
underlying operating system might transmit the HTTP header in a single,
small segment before the Web server has performed the second system call
that writes the response body into the send buffer. Suppose the response body
is also smaller than the maximum segment size. In theory, the operating sys-
tem would have to delay the transmission of the response body, in the hope
of accumulating more data. However, if the server application initiates the clo-
sure of the connection, the operating system does not expect the application to
provide any additional data over the connection. This triggers the transmission
of the small segment, regardless of whether the acknowledgment of the first
packet has arrived. If the server does not close the connection, the operating
system does not transmit the small second segment until the acknowledgment
of the first segment arrives. In addition to the RTT for the acknowledgment
to reach the server, the operating system at the client machine may delay the
transmission of the acknowledgment packet, as discussed later in Section 8.2.3.

Even if the server writes the entire response message in one step, Na-
gle’s algorithm can degrade the effectiveness of persistent connections [Hei97].
Consider a Web server that writes an HTTP response message into the send
buffer. This would generate a relatively large amount (say, 8 to 12 KB) of data,
typically in a short period of time. The operating system would transmit the
response message as a series of full-size packets. At most, depending on the size
of the response, there may be one small final packet at the end of the message.
For example, consider a 6000-byte message that is transmitted over a TCP
connection with an MSS of 1460 bytes. This would result in four 1460-byte
segments and one 160-byte segment. The operating system would transmit the
sequence of full-size packets and then delay the transmission of the small final
packet. The transmission of the final packet is triggered by one of the following
two events:

¢ Writing of additional data into the send buffer: The server appli-
cation may write additional data into the send buffer, resulting in the
transmission of a full-size packet, as shown in Figure 8.6. The packet con-
tains the end of the first response message and the beginning of the second
response message. However, the server does not necessarily have additional

322 HTTP/TCP INTERACTION

Delay for outstanding
ACKsto arrive

[[

Time

Figure 8.7. Server transmitting small packet after receiving ACKs

data to transmit to the client. For example, the server may not have ad-
ditional requests from this connection to process at this time.

e Receiving all outstanding acknowledgments: Acknowledgments may
arrive for all of the outstanding data that was transmitted to the receiver,
allowing the operating system to transmit the small final packet. Figure 8.7
shows an example in which the server has an initial congestion window of
two full-size packets and receives an ACK packet for every other data
packet. Waiting for acknowledgments introduces an RTT delay. For small
response messages, the round-trip delay in sending the small final packet
may be a very significant part of the total latency.

Disabling Nagle’s algorithm is an easy way to avoid these performance penal-
ties. This is achieved by setting the appropriate option when establishing the
connection. For example, the UNIX operating system has a setsockopt() func-
tion for setting options. Setting the TCP_NODELAY option in the setsockopt()
call disables Nagle’s algorithm. Web servers supporting persistent connections
typically disable Nagle’s algorithm. Web clients may also disable Nagle’s algo-
rithm. Otherwise, the transmission of large request messages, such as PUT and
POST requests, may encounter performance penalties.

DISADVANTAGE OF DISABLING NAGLE’S ALGORITHM

On the surface, disabling Nagle’s algorithm should not have any undesirable
effects on Web performance. However, Nagle’s algorithm provides important
protection when the application writes data in small increments. Consider a
Web server that performs a separate system call to write each line of the HTTP
response header. With Nagle’s algorithm disabled, each write() call could result
in a separate packet. This would be very inefficient. For example, consider a
300-byte response header consisting of ten lines. The header should fit in a single
IP packet. In fact, the packet could also include the initial part of the response
body, if one exists. However, writing the header lines one at a time would
result in up to ten packets when Nagle’s algorithm is disabled. This problem
was common in the early NCSA Web server, which invoked a system call to
write each response header. A similar phenomenon has also been observed in a
Network News Transfer Protocol (NNTP) server [MSMV99].

8.2. HTTP/TCP LAYERING 323

The likelihood of having a separate packet for each header depends on the
load on the server. A heavily loaded server is less likely to send a large number of
small packets. Consider a busy server that is generating and sending hundreds
of responses at the same time. The transmission of IP packets is limited by
the bandwidth of the underlying network connection. During periods of heavy
load, the operating system must queue the data written by the server. Consider
a server process that invokes ten system calls to write the headers of a single
response message. On a heavily loaded server, the second system call may occur
before the server transmits the data from the first system call. The operating
system combines the data from the two system calls into a single packet. In
fact, the operating system may transmit all ten headers in a single packet. If the
server were lightly loaded, the operating system would transmit the ten headers
as separate packets. Each of these packets would incur a 40-byte overhead for
the IP and TCP headers.

The server can avoid generating small packets without enabling Nagle’s
algorithm by generating the entire response header and then invoking a single
write() call to write the header into the transmit buffer. This ensures that the
operating system does not create separate packets for each header line and
also avoids the overhead of performing multiple system calls. In fact, the server
could conceivably perform a single system call to send both the HT'TP header
and the response body, as discussed in more detail later, in Section 8.4.1.

8.2.3 Delayed acknowledgments

By design, TCP supports bidirectional communication between two hosts. When
both hosts transmit traffic, TCP acknowledgments can be piggybacked on data
transfers. Delaying the transmission of an acknowledgment increases the likeli-
hood of piggybacking the ACK on a data packet. Although effective for two-way
applications such as Telnet and Rlogin, delaying the transmission of acknowl-
edgments increases the latency for Web transfers. If Nagle’s algorithm is en-
abled, delayed acknowledgments can stall the downloading of the last portion
of a Web page. In this subsection, we discuss the motivation for delayed ac-
knowledgments and examine the implications on Web performance.

MOTIVATION FOR DELAYED ACKNOWLEDGMENTS

A TCP sender depends on acknowledgments from the receiver to pace the trans-
mission of data. The congestion window controls the packet transmissions. Once
the window is full, the sender cannot transmit new data packets before receiv-
ing an ACK from the receiver. Receiving ACKs in a timely manner is crucial
to sustaining a high data-transfer rate. However, sending an ACK requires the
receiver to transmit a 40-byte packet—a 20-byte IP header and a 20-byte TCP
header, with the ACK bit set. This is very inefficient. Consider a sender that
transmits 400-byte packets to the receiver. Sending a 40-byte acknowledgment

324 HTTP/TCP INTERACTION

packet for every data packet would increase the amount of traffic in the network
by 10%. The amount of acknowledgment traffic can be reduced in two ways.
First, the receiver does not necessarily have to send an ACK for every data
packet. Second, the receiver could piggyback the ACK information (the ACK
flag and acknowledgment number) while sending data packets of its own.

Piggybacking the ACK on an outgoing data packet avoids sending separate
acknowledgment packets. This is very effective when the receiver has data of
its own awaiting transmission. However, piggybacking is impossible when the
receiver does not have data to send. To increase the likelihood of piggybacking,
TCP allows the receiver to delay transmission of the ACK packet in the hope
that the application will generate data soon. This is very effective for interac-
tive applications. Consider a user running on machine A that has an Rlogin
session with machine B. Suppose the user types one or more characters. These
characters are sent over the TCP connection to B. Then the Rlogin applica-
tion reads these characters from the connection. The application generates an
echo of these characters to be displayed on the screen on machine A. The echo
generates a data packet to be sent from B to A. Ideally, B would acknowledge
reception of the initial characters and send the echo with a single packet. How-
ever, this is not possible if B generates an ACK immediately after receiving the
data packet from A. Instead, the receiver could delay the ACK and piggyback
it on the packet with the echoed characters.

The longer B waits to send the ACK, the higher the chance of piggybacking
on an outgoing data packet. However, B should not wait too long. Acknowledg-
ing the receipt of the packet from A is important. A may not be able to send
additional data if the transfer is not acknowledged. Hence, delaying the ACK
could increase the latency of transfers from A to B. To balance this trade-off,
TCP invokes a timer to trigger the transmission of the ACK, even if no outgo-
ing data is available. Most TCP implementations send outstanding ACKs every
200 ms, although some implementations introduce a delay of up to 500 ms. To
avoid delaying ACKs for busy connections, TCP requires that at least every
other full-size packet must be acknowledged, even if the delayed-ACK timer
has not expired. For example, if a Web server is transmitting a large response
message to a client at high speed, the client would transmit an ACK packet
immediately after receiving every other data packet, even if the client did not
have outgoing data to send to the server.

INTERACTION OF DELAYED ACKS wWITH HTTP TRAFFIC

Delayed ACKSs reduce the amount of acknowledgment traffic in two ways: by
piggybacking the ACK on an outgoing data packet and by sending an ACK
for every other data packet, rather than every packet. Piggybacking of ACKs
is very unlikely for Web traffic. A typical Web transfer involves a small HTTP
request message from the client, followed by an HTTP response from the server.

8.2. HTTP/TCP LAYERING 325

Server——
17 X
o (@)
§- <
a
[} [} [® 0 o
2.\ 2 2
< 83l 8.l Q.
no no 0no
Q
] g8\ &8 &2
Client

Delayed-ACK timeout

Figure 8.8. Client delaying the ACK of first two segments from server

It is very unlikely that both hosts would transmit data at the same time, except
perhaps when a server is sending a response while the client is pipelining sub-
sequent request messages. Delaying the transmission of an ACK packet rarely
allows the client to piggyback the acknowledgment on an outgoing data packet.
Instead, the 200 to 500 ms latency introduced by the delayed-ACK timer can
degrade Web performance. This latency may be visible to the user. In addi-
tion, when the server’s congestion window is full, delaying the transmission of
acknowledgments stalls the transmission of the rest of the response.

The delayed-ACK mechanism can introduce unnecessary delay for Web
traffic, depending on how the server software is written. Consider a Web server
that transmits an HTTP response header and body in two separate steps. The
HTTP response header is typically smaller than the MSS. The operating sys-
tem may transmit the small packet before the application writes any additional
data into the send buffer. Later, the server application starts writing the re-
sponse body into the send buffer. If the server has disabled Nagle’s algorithm,
the operating system can start transmitting the packets containing the response
body. Upon receiving the first full-size packet, the client has received two pack-
ets from the server. However, the client does not generate an ACK because
the first packet (the HTTP header) was smaller than the MSS. The client must
wait for the delayed-ACK timer to expire before sending an ACK. Depending on
the congestion window size, the server may not be able to transmit additional
data until the ACK arrives, as shown in Figure 8.8. To avoid this problem,
some operating systems disable the delayed-ACK mechanism at the beginning
of a connection. However, this does not prevent the problem from arising for
subsequent response messages that use the same TCP connection.

Nagle’s algorithm has a subtle interaction with the delayed-ACK mecha-
nism when the server and the client maintain a persistent connection [Hei97];
the same phenomenon has been observed in an NNTP server [MSMV99]. Con-
sider a Web server that has written an HTTP response into the send buffer.
The operating system divides the response message into TCP segments, each

326 HTTP/TCP INTERACTION

Transmission delayed till ACK arrives
Server
X X
O]
< <
(0] (0] o) o e 0 o
5] 5] @ 7
= = = e
[¢] [¢] [¢] k=
[o2 [=2 o2 2’5
[[[S
)) o) 25
. = [i= o« o=
Client

Delayed—-ACK timeout

Figure 8.9. Interaction of Nagle’s algorithm with delayed ACKs

transmitted in an TP packet. The operating system tries to send data in full-
size packets, though the last packet is typically smaller than the others. For
example, consider a 5000-byte message that is transmitted as three 1460-byte
segments and one 620-byte segment. Following the delayed-ACK algorithm, the
client acknowledges each pair of full-size packets. After receiving acknowledg-
ments for the first two packets, the server transmits the third full-size packet.
Upon receiving this packet, the operating system on the client machine does
not transmit an acknowledgment packet, in accordance with the delayed-ACK
mechanism. However, the operating system on the server machine does not
transmit the final small segment until receiving all outstanding acknowledg-
ments. The server transmission stalls awaiting an ACK from the client (because
of Nagle’s algorithm), and the client delays the acknowledgment (because of the
delayed-ACK algorithm), as shown in Figure 8.9. Fortunately, disabling Nagle’s
algorithm at the server can prevent this situation from arising in practice.

8.3 Multiplexing TCP Connections

The previous two sections consider the dynamics of an individual TCP connec-
tion. However, a client often establishes multiple TCP connections to a server.
Having multiple TCP connections at the same time has important performance
and fairness implications. In this section, we examine the motivations for clients
to establish multiple connections, discuss the resulting performance issues, and
consider several ways to control the potential performance problems.

8.3.1 Motivation for parallel connections

A Web client has several incentives to have multiple TCP connections to a Web
server at the same time as follows:

¢ Simultaneous downloading of embedded images: A Web browser
typically establishes parallel connections to a server to retrieve multiple

8.3.

MULTIPLEXING TCP CONNECTIONS 327

embedded images at the same time. The first few bytes of an image typ-
ically indicate the size of the picture. This allows the browser to start
rendering the Web page before the images have arrived in their entirety.
The JPEG and GIF formats also support progressive encoding, or interlac-
ing, which enables the browser to display the image with increasing quality
as the response message arrives from the server. A user may prefer to see
a coarse-grain view of several embedded images rather than a fine-grain
view of a single image, making parallel downloading of embedded images
an attractive alternative to serializing the requests. Parallel connections
also arise when a user issues requests from multiple browser windows at
the same time.

Proxy acting on behalf of multiple clients: A Web proxy may handle
requests for multiple clients accessing the same Web server at the same
time. The proxy could conceivably send all of the requests over a single
TCP connection. This avoids the overhead of establishing a new connec-
tion, at the expense of coupling the performance experienced by different
users. Suppose user A and user B configure their browsers to connect to
the same proxy. Suppose user B requests a 100-byte HTML file just after
user A requested a 100 MB file from the same Web server. If the proxy
sends both requests over the same (persistent) connection to the server,
then user B would have to wait for the transmission of the 100-megabyte
file to complete before any part of the small HTML file would be sent.
Having two connections to the server would allow the proxy to retrieve the
files in parallel, resulting in a much better response time for user B.
Higher throughput by transmitting aggressively: The client can
achieve higher throughput by establishing multiple TCP connections to
the server. Suppose a client communicates with a server over a path with a
large RTT. Even if the network and the server are lightly loaded, the high
RTT limits the TCP throughput. The maximum window size is limited
by the client’s receive buffer and the congestion window, and the server
cannot transmit more than one window’s worth of data before receiving
acknowledgments sent by the client. In addition, the congestion window is
small at the beginning of the connection because of the slow-start phase of
congestion control. Transmitting responses over multiple connections can
increase the overall throughput from the server to the client.

The HTTP specification suggests that a user agent should have at most two
TCP connections to a server at a time, and a proxy that handles requests on
behalf of multiple clients should limit itself to two connections per requesting
client. However, client and proxy implementations often disobey these guide-
lines. In addition, a user agent may open multiple parallel connections to re-
trieve different parts of a single resource by issuing range requests, as discussed
in Chapter 7 (Section 7.4.1).

328 HTTP/TCP INTERACTION

8.3.2 Problems with parallel connections

Parallel connections increase overall throughput for an individual client, at the
expense of the greater good. The use of parallel connections causes several
problems, as follows:

e Unfairness to other clients: A client that issues requests on multiple
connections at a time achieves higher throughput by claiming bandwidth
that would normally be allocated to other clients. Consider two Web clients
that send requests over the same path through the network to the same
Web server. Suppose that client A has four parallel TCP connections,
whereas client B has just one TCP connection. Client A may receive up
to four times more server processing and network bandwidth than client
B, which could result in significantly lower latency for client A. However,
client B would receive lower throughput and experience higher latency.
One way to counteract the unfairness is for client B to open multiple TCP
connections as well. To receive a higher proportion of the bandwidth, each
client has an incentive to open more connections than the other clients.

e Higher network and server load: In addition to introducing unfair-
ness between users, parallel connections increase the load on the server
and the network. Consider a client that opens multiple connections at the
same time to download a collection of embedded images. This introduces
a sudden burst of traffic that imparts a heavy load on the network and
the server. Even if each TCP connection proceeds through the slow-start
phase of congestion control, the aggregate traffic from the set of connec-
tions could be quite large. As an extreme example, consider a client that
opens 20 TCP connections to the same server. The client would generate 20
SYN packets in a very short period, followed shortly by 20 HTTP request
messages. The Web server would consume most of its system resources try-
ing to receive and process the SYN packets and HTTP requests. For the
network, the collective load generated by a large number of SYN packets
can cause a sudden backlog of traffic, ultimately leading to packet loss.

e Higher user-perceived latency: In addition to competing with traffic
destined to other clients, the parallel connections compete with each other
for network and server bandwidth. Consider a client with a 28.8 Kb/sec
access link to the Internet (e.g., a telephone modem). If the client opens 20
parallel connections, each transfer receives at most 1.44 Kb/sec. In retriev-
ing embedded images in a Web page, slow progress on multiple transfers
may be preferable to fast progress on a single transfer. In other cases, the
user may prefer fast progress on a small number of transfers. For example,
a user may download multiple Web pages in different browser windows.
Having a large number of active transfers at the same time would force the
user to wait longer to receive any of the Web pages.

8.4. SERVER OVERHEADS 329

These fairness and performance problems have several possible remedies, as
follows:

¢ Removing performance incentives for parallel connections: En-
forcing fairness typically requires the use of scheduling algorithms to arbi-
trate access to network bandwidth and the system resources at the server.
For example, rather than performing first-in first-out scheduling, a network
router could alternate between packets to or from different end points. Al-
ternatively, the router could keep track of how much traffic has been sent
to each destination or from each source and penalize the end points that
send too aggressively. The penalty may involve discarding some proportion
of the packets. However, these techniques increase the complexity of the
routers. Similarly, the TCP implementation on the Web server machine
could ensure that traffic destined to different clients receives a fair share
of the network bandwidth. In addition, the Web server could allocate its
processing, memory, and disk resources fairly across different clients.

e Providing alternatives to parallel connections: Persistent connec-
tions address some of the incentives for using parallel connections, as dis-
cussed in Chapter 7 (Section 7.5). Sending multiple responses over a single
TCP connection avoids the overhead of establishing multiple connections.
In addition, reusing an existing TCP connection typically avoids the need
to repeat the slow-start phase of congestion control. However, persistent
connections do not address the desire to download multiple embedded im-
ages at the same time. A client could conceivably retrieve a portion of
each image on a single persistent connection by sending a series of range
requests. As an alternative, the relationship between HT'TP and TCP could
change to allow interleaving of several independent transfers on a single
TCP connection.

Techniques for fair bandwidth allocation have been an active area of research
and development as the Internet continues to evolve from a best-effort envi-
ronment to a network that supports a wide range of services [Kes97]. Recent
proposals for changing how end hosts allocate bandwidth across a collection of
Web transfers are considered in more detail in Chapter 15 (Section 15.1).

8.4 Server Overheads

Reading request messages, generating responses, and transmitting data to clients
consume significant resources at Web servers. These operations require the
server to perform several functions that relate to TCP. In this section, we de-
scribe how some of these steps can be combined or avoided. Then we consider
the challenges of handling a large number of simultaneous connections. These
performance issues apply to both proxies and origin servers.

330 HTTP/TCP INTERACTION

8.4.1 Combining system calls

The Web server interacts with TCP through a series of system calls. Performing
multiple steps in a single system call provides the operating system with addi-
tional information that can improve the efficiency of the data transfer. Consider
a UNIX-based Web server processing a GET request for a static file:

1. Listening for requests for new connections: The server listens for re-
quests for new connections, and the operating system maintains an accept
queue of pending connections.

2. Establishing a new connection: The server acquires a new connection
from the accept queue using the accept() call. At this point, the server has
a connection for communicating with the requesting client. In preparation
for transmitting data to the client, the server may perform a setsockopt()
call to disable Nagle’s algorithm.

3. Generating the response message: The server performs one or more
read() calls to read the client’s HTTP request message. Then the server
parses the request message and identifies the requested file. The server
opens the requested file, using the open() call. The server may invoke
various other system calls to construct the HTTP response header (e.g., to
learn the current time, as well as the file’s size and last modification time).

4. Sending the response message: After constructing the HTTP response
header, the server uses the write() call to write these bytes to the connec-
tion. Then the server can begin sending the file. This involves using the
read() call to read from the file and the write() call to write the data to
the connection. If the send buffer is full, the operating system may prevent
the server application from performing additional write() operations until
some of the earlier data has been successfully transmitted to the client.

5. Closing the file and (optionally) the connection: After writing the
last byte of the response, the server can close() the file and optionally
close() the TCP connection. If the server implements persistent connec-
tions, and the client did not request that the connection be closed, the
server may keep the connection open for a subsequent transfer. Finally,
the server can perform a write() to create an entry in the server log.

Executing a system call typically requires a context switch between the server
application and the operating system. Having a single system call perform mul-
tiple operations avoids the overhead and delay associated with context switches.
Combining multiple steps into a single system call also facilitates other perfor-
mance optimizations related to TCP [NBK99], as follows:

e Copy the file contents directly to the operating system: In satis-
fying the GET request, the Web server must read a file and then write the
contents to the send buffer. In many cases, the server does not inspect or

8.4.

SERVER OVERHEADS 331

manipulate the contents of the file. Reading the file, and then writing into
the send buffer, introduces unnecessary overhead. The bytes are copied
from the file system to user space and then from user space to the send
buffer in the operating system. Instead, data could be copied directly from
the file system to the send buffer using a single system call. Several oper-
ating systems include a sendfile() or transmitfile() system call to perform
this function.

Send the response header and body with a single call: The server
could send the response header as part of the same system call, such as the
writev() call. The server typically constructs the response header in a sepa-
rate buffer. The combined system call would need to allow the application
to specify a buffer (for the response header) and a file (for the response
body) and then transmit the contents of the buffer followed by the contents
of the file. This would avoid the need for separate system calls to write the
header and the body to the socket, without requiring the application to
first copy the header and body into a contiguous buffer. In addition, this
enables the operating system to send the beginning of the response body
in the same IP packet as the response header. Otherwise, if two system
calls were involved, the operating system might send the header before
the server performed a second call to send the body. Combining these two
steps reduces the total number of packets and avoids potentially harmful
interactions with the delayed-ACK timer, as discussed in Section 8.2.3.
Send the response and close the connection with a single call:
The server could close the connection as part of the same system call that
writes the HTTP response. This would allow the server to write the HTTP
header, send the response body, and close the connection in a single step.
The operating system knows that the server wants to close the underlying
TCP connection. Closing the connection involves sending a packet with
the FIN bit set. The operating system has the option of piggybacking the
FIN on the last data packet of the transfer, as shown in Figure 8.10. This
is possible because the operating system already knows that the applica-
tion wants to close the connection. Otherwise, the operating system may
have already transmitted the last data packet before learning that the ap-
plication intended to close the connection. For large response messages,
the operating system typically would not have completed the transmis-
sion of the entire response before the second system call. However, smaller
response messages are likely to require a separate FIN packet. Having a
single system call for sending the response and closing the connection en-
sures that the operating system piggybacks the FIN. This reduces overhead
by avoiding the transmission of the extra packet.

Extending the operating system to include new system calls can improve

the performance of Web servers. In theory, the entire Web server could be

332 HTTP/TCP INTERACTION

Server -
=2
® 0 0 o [}
2\ 2
%_ o
Client

Figure 8.10. Server piggybacking the FIN on the last data packet

implemented in the operating system. Implementing an application in the op-
erating system is common in small embedded systems that perform a single
task. However, general-purpose operating systems usually do not implement
entire applications. Executing time-consuming functions inside the operating
system makes it difficult to share processor, memory, and disk resources across
multiple tasks. As a result, operating systems typically have a small set of care-
fully chosen system calls. The needs of Web servers may motivate the addition
of a few system calls or the improvement of the implementation of other system
calls. However, individual applications usually do not warrant major changes
in the set of functions provided by the operating system.

8.4.2 Managing multiple connections

The efficiency of a Web server depends on the number of TCP connections
that are open simultaneously. Web servers control the number of connections
in two main ways: by rejecting requests for new connections and by closing idle
connections.

CONTROLLING NUMBER OF SIMULTANEOUS CONNECTIONS

FEach TCP connection consumes a certain amount of memory at the server for
storing TCP state information and the send/receive buffer. For example, each
TCP connection has a control block that stores information such as the conges-
tion window and RTT estimates. These memory requirements can grow quite
high when the server has a large number of simultaneous TCP connections.
Inactive connections in the TIME_WAIT state also consume server resources,
as discussed in Section 8.1.3. In addition, a process-driven server has a separate
process for each open connection, resulting in additional memory requirements.
TCP and process state consume memory that could be used for other purposes,
such as server-side caching of Web resources and their metadata, as discussed in
Chapter 4 (Section 4.3). Server-side caching becomes much less effective when
the server has a very large number of simultaneous connections. Cache misses

8.4. SERVER OVERHEADS 333

introduce extra server overhead for fetching resources from disk and regenerat-
ing metadata.

The overhead for the operating system to handle an incoming packet grows
with the number of open connections. When a packet arrives, the operating sys-
tem must inspect the source and destination IP addressees and port numbers
to demultiplex to the appropriate TCP connection. In some older operating
systems, packet demultiplexing required a linear scan of the list of connections;
as an optimization, the connections in the TIME_WAIT state could be placed
at the end of the list because they are very unlikely to receive any packets.
For a further reduction in latency, modern operating systems maintain a hash
table that maps the source and destination IP addresses and port numbers
to the appropriate connection. Still, the access latency and memory require-
ments for the hash table grow in the number of connections. In addition, for
an event-driven server, a single process must listen (e.g., using the select() call)
on all open connections for arriving packets. The overhead of this system call
increases with the number of simultaneous connections, even when many of the
connections are idle [BM98].

The optimal number of active TCP connections depends on the server
architecture and the characteristics of the HT'TP traffic. Generating and trans-
mitting response messages consumes processor, memory, disk, and network re-
sources at the server. Sharing these system resources across a large number of
simultaneous requests results in higher delay in generating and transmitting
the response messages. As an extreme example, consider a Web server that
invokes a CGI script that requires two seconds of processing time to generate
each response message. Allowing the processor to alternate back and forth be-
tween servicing each of the ten requests would result in a 20-second latency in
generating each response. Higher user-perceived latency may cause the user to
leave the Web site or abort the slow responses and initiate new requests. The
poor performance irritates the users and wastes system resources at the server.
In the worst case, the server becomes so overloaded that no productive work
is performed. The number of simultaneous TCP connections must be carefully
controlled to avoid this situation.

Despite the disadvantages of having too many simultaneous TCP connec-
tions, the server should not be unnecessarily restrictive. Limiting the number
of simultaneous connections may block or delay TCP connection setup requests
from new clients. When the server has reached the maximum number of con-
nections, any arriving SYN packets are placed in a queue. The SYN requests
are delayed until one of the existing connections closes. Once the accept queue
is full, the server drops SYN packets, thereby rejecting requests for new connec-
tions. An overly conservative limit on the number of connections also results in
underutilization of the server and network resources. The server needs a certain
number of active TCP connections to exploit the available network bandwidth
because the transmission rate for many connections is limited by round-trip

334 HTTP/TCP INTERACTION

delays and throughput limitations along the path to the requesting client. A
Web server could send responses to a large number of low-bandwidth clients
without exhausting the capacity of a high-bandwidth link to the Internet.

POLICIES FOR CLOSING PERSISTENT CONNECTIONS

As part of controlling the number of connections, an HTTP /1.1 server must also
decide when to close a persistent connection. Keeping a persistent connection
open allows the server to respond more quickly to subsequent requests by the
same client and avoids the overheads of terminating and reestablishing the
connection. Maintaining a connection beyond a single HT'TP transfer increases
the number of simultaneous connections at the server. The server can employ
a wide variety of strategies for closing persistent connections. The simplest
strategy is for the server to apply a timeout to close an idle connection. For
example, the connection could be closed if no request has arrived in the last 15
seconds. If the connection has been idle for several seconds, the likelihood of
receiving another request in the near future is very small.

However, even a relatively small timeout value may keep the connection
open too long, especially because many clients request only one resource from
the server. To handle this situation, the server can employ a hybrid timeout
policy [PM95]. The server could use a small timeout after the first request and
increase the timeout if the client issues additional requests. In addition to ap-
plying a timeout, the server may also limit the total number of requests allowed
on a single connection. Otherwise, a client would have an incentive to generate
periodic requests simply to keep the server from closing the persistent connec-
tion. For example, every ten seconds the browser might generate an HTTP
request, even if the client is idle, in order to ensure that the connection remains
open long enough to handle the client’s next request. By limiting the number
of requests per connection, the server avoids rewarding this behavior. However,
this policy forces a well-behaved client to incur the overhead of establishing a
new TCP connection after reaching the limit on the number of requests.

Policies based on timeouts and the number of requests are relatively easy
to implement because they consider each TCP connection in isolation. In a
process-driven server, these policies have the advantage of not requiring any
coordination between processes. The server could conceivably implement more
complicated policies by considering all of the open connections collectively. The
server effectively has a cache of open TCP connections, and deciding which TCP
connection to close amounts to a cache-replacement decision. For example, the
server could close the connection that has been idle the longest. Similar to the
timeout-based policy, this heuristic assumes that an idle connection is less likely
to receive a request in the near future. Alternatively, the server could base the
decision on the relative importance of the user. This may be a reasonable policy
for a commercial site that wants to deliver good performance to high-paying

8.5. SUMMARY 335

customers. Similarly, the server may try to avoid closing connections to far-
away clients that would experience high setup delay in opening a new TCP
connection.

8.5 Summary

Despite the benefits of dividing communication tasks into multiple protocol lay-
ers, interactions between layers can have negative implications on end-to-end
application performance. The timers that control key operations in TCP have
a direct effect on HTTP performance. TCP features that were designed when
Telnet and Rlogin were dominant applications can interact in subtle ways with
Web transfers. Implementation decisions in Web software components can mit-
igate or exacerbate these effects. In contrast to earlier Internet applications, a
Web client typically has multiple transport-layer connections at the same time
to download multiple Web resources in parallel. Parallel connections increase
network and server load and introduce unfairness across Web users. Busy prox-
ies and servers handle a large number of TCP connections on behalf of multiple
clients. The efficiency of proxies and servers depends on having effective policies
for controlling the number of open connections.

