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Optimization in 
Networking

• Distributed optimization

• Wireless power control 

• Combinatorial optimization 

• P2P streaming capacity

• Nonconvex optimization 

• Internet IP routing

• Stochastic optimization 

• Wireless scheduling

• Optimization as a language for networking  

All are recent updates on 
long-time questions, 

with interesting math 
and visible impact

“Distributed” is a keyword



maximize f(x) + g(y)
subject to x+ y ≤ 1

L(x, y, λ) = (f(x)− λx) + (g(y)− λy) + λ

minimize maxx,yL(x, y, λ)
subject to λ ≥ 0

Dual Decomposition: 
The simplest Case

Primal

Lagrangian

Dual



How to solve it in a distributed way?

Turns out to be a power control problem in wireless 

maximize
�

i Ui(γi)
subject to Giipi�

j �=i Gijpj+ni
≥ γi

variables {pi, γi}



How to solve this combinatorial tree-embedding 
problem in polynomial-time?

Turns out to be video streaming capacity in P2P

maximize
�

t∈T yt
subject to

�
t∈T mv,tyt ≤ Cv, ∀v

yt ≥ 0, ∀t ∈ T
variables {yt}



minimize Φ({fu,v, cu,v})
subject to

�
v f

t
s,v −

�
u f

t
u,s = D(s, t), ∀s �= t

fu,v ≤ cu,v ∀(u, v)
fu,v =

�
t f

t
u,v, ∀(u, v)

variables {f t
u,v, fu,v}

Multi-commodity flow with a twist: can only solve via 
update of weights used at each node

 Turns out to be IP routing in the Internet



How to approach optimality based on local observations 
of stochastic network state?

Turns out to be random access scheduling in wireless

maximize
�

l Ul(xl)
subject to xl ≤

�
s∈S:sl=1 πs, ∀l

πs ≥ 0, ∀s�
s∈S πs = 1

variables {xl, πs}



Power Control
P. Hande,S. Rangan, M. Chiang, X. Wu, “Distributed uplink power 
control for optimal SIR assignment in cellular data networks”, 

IEEE/ACM Transactions on Networking, vol. 16, no. 6, pp. 
1430-1443, November 2008

Uplink Power Control in Multi-cellular Networks

Maximize: utility function of powers and QoS assignments

Subject to: QoS assignments feasible

Variables: transmit powers and QoS assignments
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Power Control: 
System Model

System Model

BS0 

BS1 

BS2 

MS0 

Interference 

Power 

MS1 

M MS and N BS

Each MS i served by a BS σi

Each BS k serving a set of MS: Sk

Ci: set of interference links

• Non-orthogonal system: Ci = {j | j != i}

• Orthogonal system: Ci = {j | σj != σi}

Mobile Stations (MS)
Base Stations (BS) 

Each MS served by a BS
Each BS serving a set of MS

Interference-limited wireless 
data networks

Transmit power control in 2G -> 3G -> 4G networks



Power Control: 
Optimization Formulation

Uplink Power Control in Multi-cellular Networks

Maximize: utility function of powers and QoS assignments

Subject to: QoS assignments feasible

Variables: transmit powers and QoS assignments
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Maximize: utility function of SIR 
Subject to: SIR feasibility 
Variables: transmit power and SIR 
assignments

SIR : γi =
piGii�

j �=i pjGij + ni



Power Control: 
Parameterization

   is feasible iff there exists an           such that 

load vector             spillage vector  

New (left-eigenvector) parametrization of SIR feasibility 
boundary:  

γ s � 0

sTGD(γ) = sT

s r r = GT s

γ = s/r

Intuition: assign high SIR to MS with 
• good direct channel
• weak interfering channel 



Power Control:
Load Spillage Algorithm

Initialize: Arbitrary                s(0) � 0

BS broadcasts load factor sum 
MS 

computes spillage factor 
assign target SIR value 
update power to attain target
measure interference 
update load factor 

Continue: t:=t+1

lk(t) =
�

i∈k

si(t)

ri(t) =
�

k �=i

hkilk

γi(t) = si(t)/ri(t)

si(t+ 1) = si(t) + b(t)

�
U �
i(γi)γi
qi

− si(t)

�qi(t)



Power Control: 
Convergence and Optimality

For sufficiently concave and starvation-free utility function, 
algorithm converges to global optimizer of 

maximize
�

i Ui(γi)
subject to Giipi�

j �=i Gijpj+ni
≥ γi

variables {pi, γi}

Proof key steps: 
Develop a locally computable ascent direction 
Evaluate KKT conditions 
Ensure Lipschitz condition



Power Control: 
3GPP Simulation

Simulation
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3GPP Evaluation Tool in industry: 19 cells in three hexagons

Each cell divided into three 120 degree sectors, 57 base station sectors

Uniform distribution of MS

Antenna: 65 degree 3 dB bandwidth, 15 dB antenna gain

Channel: Pass loss exponent: 3.7, log-normal shadowing: 8.9 dB

Convergence

10 MS per sector, 570 MS in total

Fast convergence with distributed control
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Interference-limited version of distributed algorithm

Tradeoff between sector capacity and Rise-Over-Thermal limit
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Power Control: 
Qualcomm Implementation

•

•

•

Factor of 4 improvement 
in spectral efficiency



P2P Streaming
M. Chen, S. Liu, S. Sengputa, M. Chiang, J. Li, and P. A. Chou, “P2P 
streaming capacity”, IEEE Transactions on Information Theory, To 

Appear, 2010



P2P Streaming:
Scalable, How Fast? 

Rethinks who sends to whom? 
Client-server: not scalable 
Peer to peer: scalable for massive amount of sharing 

Extremely popular, once 70% of Internet traffic 
File sharing: BitTorrent... 
Video streaming: PPLive...
Video on demand...

What is the limit of P2P streaming rate? 
How to achieve it? 



P2P Streaming:
Embedding Multi-Trees

Assumptions & challenges for the three problems 
1 

!  Assumptions: 
!  Uplink bottleneck: 

!  Stead state study 

!  Challenges:  
!  Graph of node connectivity: non-full-mesh in general 
!  Peer outgoing degree = fanout = # of children: bounded 

!  Existence of helper node: Steiner tree instead of spanning tree 
!  Single-session or Multiple sessions  
!  Heterogeneous uplink capacities: DSL, Cable, Fiber… 

!  Combinatorial problems: exp # of trees " NP in general 

Millions of users 

40-50 neighbors 

5 downloaders 

What is the highest possible rate to all the receivers by 
optimizing over the overlay topology? 



P2P Streaming: 
Taxonomy

8 variations of the problem: 
Given graph full mesh or not?
Node degree constrained or not? 
Helper nodes exist or not?  

Some are solved exactly 
Some are solved arbitrarily closely 

full mesh, degree bound, helper
non full mesh, no degree bound, no helper

Some are approximated
One is open 



P2P Streaming: 
Intuition

Constrained multi-tree embedding is too hard
Turn combinatorial problem into continuous optimization

Too many trees to search through 
Primal-dual iterative outer loop to guide tree search by price 
Outer loop: update price
Inner loop: easier combinatorial tree construction



P2P Streaming: 
Notation

Source:  
Set of receivers:

Tree:
Set of allowed trees:
Outgoing degree:  

Uplink rate: 
Uplink capacity: 

Price:
Total price:
Min price:

s

R

t

T
mv,t

Uv

Cv

pv
Q(t,p) =

�

v

mv,tpv

α(p) = min
t

Q(t,p)

rate r =
�

t

yt

Uv =
�

t

mv,tyt



P2P Streaming: 
Primal and Dual

Single Session: Primal and Dual Problem

maximize r =
P

t∈T yt

subject to
P

t∈T mv,tyt ≤ Cv , ∀ v ∈ V

yt ≥ 0 ∀ t ∈ T

variables t, mv,t, yt, r

constants T , Cv

minimize
P

v∈V Cvpv

subject to
P

v∈V mv,tpv ≥ 1 , ∀ t ∈ T,

pv ≥ 0 ∀ v ∈ V

maximize
�

t∈T yt
subject to

�
t∈T mv,tyt ≤ Cv, ∀v

yt ≥ 0, ∀t ∈ T
variables {yt}



P2P Streaming: 
Algorithm

initialize 
while (tree-price small enough) 

pick allowed tree with smallest price 

update counters
end while 
normalize and output capacity  

y = min
v∈It

Cv/mv,t

pv = pv

�
1 + �

y

Cv/mv,t

�



P2P Streaming: 
Efficiency

Approximation’s accuracy: 
for appropriately chosen
 

Time complexity: 
Use Garg and Konemann 1998

�tree − �

O

�
N logN

�2
Ttree

�
δ

Find smallest-price-tree with small           and big 
Direction construction 
New combinatorial algorithm
Translation to: shortest arboresence, min cost group Steiner gree, degree 

constrained survivable network...

Ttree �tree



P2P Streaming: 
Global Testbed

Nodes Proxies Peers
Total # 42 ∼100
Type Collaborator PlanetLab Collaborator
Location Princeton 12

HK 7
Caltech 3 US 6 HKUST Princeton
Uruguay 3 Japan 2 70% 30%

Korea 3
Australia 3

UK 3
Bandwidth 10Mbps shared 10Mbps 10Mbps
IP-multicast − − enabled enabled

Table 2: Geographic locations and node access properties of proxy
servers and peers used in our experiments.

All of them serve as proxy servers (or helpers) in our exper-
iments, and run the FastMesh protocol. We also lease 100
desktop machines on the campus network from two of our
collaborator sites: Hong Kong (China) and Princeton (US).
These machines serve as normal peers and speak the SIM
protocol. These nodes are connected to the Internet via cam-
pus LAN, and with IP-multicast enabled. The geographic
locations of the proxies and peers are shown in Figure 4, and
node statistics are given in Table 2.

The data analyzed in this work are collected in more than
20 experiment trials conducted during Dec 2009 - Feb 2010
that broadcast live TV channels (with streaming source in
Hong Kong), which in total contribute a set of traces of more
than 200 hours.

P2P Streaming
1 views - Unlisted
Created on Apr 10 - Updated 3 days ago
By Joe, Wenjie
Rate this map - Write a comment

University of Chicago

Figure 4: Global deployment of proxy nodes.

4 Measurement Results and Data
Analysis

In this core section of the paper, we present the data we col-
lected from the experiment trials and analyze them to draw
the lessons on building a global 1Mbps P2P streaming plat-
form.

4.1 Feasibility of Streaming 1Mbps

We first investigate the feasibility of achieving 1Mbps
streaming over a global scale. Although the FastMesh pro-
tocol tries to boost end-to-end throughput over long-haul In-
ternet connections, the sustainability of a high streaming rate
is challenging, even among proxy nodes.

Global-scale RTTs with biased stream rates. We first
show that FastMesh is able to maintain a stable 1Mbps rate
among proxy servers. We select 15 proxy nodes, 8 of which
are dedicated servers from our collaborators, and 7 are Plan-
etLab nodes, as shown in Table 2. We employ PlanetLab
nodes only in this trial, in order to make a comparison be-
tween resource-dedicated and resource-shared nodes. This
scenario also broadens the node geographic coverage, which
represents a typical distribution of diverse RTTs among
proxy servers at a global scale.

Figure 5(a) shows the average rate of the received stream
of all servers over 30-second periods. The system is able
to achieve a streaming rate close to 1Mbps, but suffers from
persistent rate fluctuations. We show in Figure 5(b) the mean
and variance of the stream rate that each server receives,
sorted in a non-decreasing order. We also list the RTTs be-
tween a server and its farthest parent, and the source, respec-
tively, in the same order of nodes as Figure 5(b). Servers
from different locations do not enjoy equal streaming quality,
indicating that locality is an important factor to achieve sta-
ble streaming, since RTTs can greatly impact the throughput
of long-haul TCP connections. Cross continent connections
are severely affected by packet losses. Streaming rate deteri-
orates and becomes less stable as RTTs exceed 100ms, which
suggests that TCP might not work well for long haul high bi-
trate connections. In the worst case, peers, most of which
are PlanetLab nodes, may not even attain a maximum stream
rate of 1Mbps, expectedly suffering from poor viewing qual-
ity. Thus, the bottleneck of 1Mbps streaming is the difficulty
to maintain a consistent stream over cross-continent connec-
tions. We later show how to overcome the bandwidth bottle-
neck.

The importance of using proxy helpers. Our system uses
the FastMesh protocol to achieve high bitrates among mul-
tiple proxies. A proxy node can play two roles. When a
proxy operates as a server, it receives the complete video
stream and is able to serve local peers that run the SIM pro-
tocol. When it operates as a helper, it receives a subset of
all substreams, and forwards them to other proxy servers (or
helpers). Without the need to receive the complete video
stream, proxy helpers can offload other proxy servers while
consuming limited resources from other proxies. Peers only
receive video streams from their local proxy servers, but do
not contact proxy helpers directly.

We compare the use of proxy servers and proxy helpers,
and results are shown in Figure 6. We deploy six proxies
at different locations to assist stream delivery between Hong
Kong (China) and Princeton (USA). We conduct two sets of
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Figure 5: Feasibility of global 1Mbps streaming with a mixture of dedicated servers and PlanetLab nodes: (a) average streaming rate, (b)
per-node streaming rate mean and variance, (c) proxy RTT distribution. Resource dedication and RTT bias are important factors that affect
the streaming performance.

experiments, the first one of which involves proxy servers
only, and the second one involves proxy helpers only. We
also compare with the default approach of using one single
TCP connection. All experiments run 30 minutes. Appar-
ently, the default approach achieves a stream rate of 300Kbps
only, while using proxies boosts the stream rate to 1Mbps.
However, employing a high stream rate may suffer from
large playback lags. A low stream rate operates below the
network bottleneck capacity, therefore attaining a low play-
back lag. On the flip side, proxy helpers outperform proxy
servers, since collecting all substreams requires more band-
width, and delay accumulates as the available capacity tem-
porarily falls below the stream rate. Therefore, in the practi-
cal deployment, a mixture of proxy servers and proxy helpers
is able to achieve the advantages that each help attain. How-
ever, calculating an optimal division between proxy servers
and helpers is open.
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Figure 6: Using proxies significantly increases the streaming ca-
pacity: (a) received stream rate, (b) playback delay. Proxy helpers
mitigate large delay anomalies.

Aggregating bandwidth by parallel TCP connections. To

achieve 1Mbps stream by one single TCP connection over a
long haul connection is challenging. This is due to TCP’s
throughput that is inversely proportional to RTT, making
trans-continent connections capped by a rate limit which is
usually lower than the 1Mbps requirement. One straight-
forward way to aggregate bandwidth is to employ multiple
simultaneous TCP connections. To quantify such benefit, we
set up a streaming session between a server in Hong Kong,
and destination users distributed across different locations,
using multiple direct TCP connections only. Figure 7(a)
shows the effective stream rate that an end user receives, as
we increase the number of parallel connections. We select
three destinations that are representative of the behaviors of
incrementing number of parallel TCP connections. Observe
that at first incrementing one connection almost doubles the
stream rate, but the marginal benefit diminishes as we in-
troduce more connections. In fact, the maximum achiev-
able streaming rate is around 1600kbps, for all destinations.
As such behavior is universal across all destinations, except
nearby servers in Hong Kong, the bottleneck is likely to be
the local ISP where traffic shaping happens. The caveat is
that the stream rate does not necessarily grow proportionally
with the number of parallel connections.

Pushing the limit of streaming capacity. We probe the
maximum streaming rate attainable in our platform, with the
two different approaches, i.e., proxies and parallel TCPs that
we investigated earlier. We vary the video stream bitrate
ranged over 500kbps-4Mbps. Figure 7(b) shows the effec-
tive stream rate we achieve in our experiments. In the re-
gion under 1Mbps stream rate, both approaches distribute
the stream successfully. However as we further increase the
video bitrate, constructing a “FastMesh” with proxy servers
and helpers becomes necessary. Our protocol is able to dis-
tribute 2Mbps stream among a limited set of diversely dis-
tributed servers successfully. The maximum stream rate is
around 3Mbps, though it is attainable within a limited scale
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Hundreds of peers around 
the world. Joint with G. 

Chan, HKUST, and J. 
Rexford, Princeton

Achieve over 1Mbps high 
quality video, about 80% of 

streaming capacity 



IP Routing
D. Xu, M. chiang, J. Rexford, “Link state routing achieves optimal 
traffic engineering”, Proceedings of IEEE INFOCOM, May 2008 

Internet Routing and Traffic Engineering

Network 
(Link-state routing) 

Operator 
(Compute link weights) 

Traffic 
matrix 

measure Link 
capacity 

link weights Desirable traffic 
distribution 
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IP Routing:
Practice Today 

Internet Routing and Traffic Engineering

Network 
(Link-state routing) 

Operator 
(Compute link weights) 

Traffic 
matrix 

measure Link 
capacity 

link weights Desirable traffic 
distribution 
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Path length= 8 

Internet Routing: a reverse shortest path method
Take in traffic matrix (constraint) 
Vary link weights (variables) 
Hope to minimize sum of link cost function (objective)

In OSPF, router evenly split traffic along shortest paths
Computing optimal link weights is NP-hard 



IP Routing:
Link State Routing

OSPF is just one member of a family called 
link state routing with hop by hop forwarding

Involves 3 steps: 
Centralized computation for setting link weights
Distributed way of using these link weights to split traffic
Hop by hop, destination based packet forwarding 

A new way to use link weights: 
Split traffic on all paths but 

exponentially penalize longer ones
A new way to compute them



IP routing:
Notation 

weight for link (u,v):
shortest distance from u to t: 
distance from u to t if through v:
gap:  

wu,v

dtu
dtv + wu,v

ht
u,v = dtv + wu,v − dtu

incoming flow at u for destination t:
flow on link (u,v) for destination t:  

f t
u

f t
u,v

f t
u,v = f t

u

Γ(ht
u,v�

u,j Γ(h
t
u,j)



IP Routing: 
PEFT/DEFT

OSPF or PEFT

OSPF:

ΓO(ht
u,v) =

8
<

:
1, if ht

u,v = 0

0, if ht
u,v > 0.

PEFT:

ΓP (ht
u,v) = Υt

ve−ht
u,v

Υt
u =

X

(u,v)∈E

“
e−ht

u,v Υt
v

”

Routers can direct traffic on non-shortest paths, with an exponential

penalty on longer paths



IP routing:
Efficiency 

Solution Idea: Network Entropy Maximization

Feasible flow routing 

Optimal flow routing 

Realizable with 
 link-state routing 

Constraint: flow conservation with effective capacity

Objective function: find one that picks out only link-state-realizable

traffic distribution

Entropy function is the right choice, and the only one

PEFT achieves optimal traffic engineering

Optimal link weights can be computed by a convex 
optimization (2000 times faster than local search 
algorithms for OSPF link weight computation)

Find an objective function 
that picks out only link state 
realizable traffic distribution

Entropy is the (only) right 
choice



IP Routing: 
Network Entropy MaxNetwork Entropy Maximization

Entropy z(xi
s,t) = −xi

s,t log xi
s,t for source-destination pair (s, t)

maximize
P

s,t

“
D(s, t)

P
P i

s,t
z(xi

s,t)
”

such that
P

s,t,i:(u,v)∈P i
s,t

D(s, t)xi
s,t ≤ ecu,v ,∀(u, v)

P
i xi

s,t = 1,∀(s, t)

variables xi
s,t ≥ 0.

Characterization of optimality:

xi∗

s,t

x
j∗

s,t

=
e
−(

P

(u,v)∈P i
s,t

wu,v)

e
−(

P

(u,v)∈P
j
s,t

wu,v)

Network Entropy Maximization

Entropy z(xi
s,t) = −xi

s,t log xi
s,t for source-destination pair (s, t)

maximize
P

s,t

“
D(s, t)

P
P i

s,t
z(xi

s,t)
”

such that
P

s,t,i:(u,v)∈P i
s,t

D(s, t)xi
s,t ≤ ecu,v ,∀(u, v)

P
i xi

s,t = 1,∀(s, t)

variables xi
s,t ≥ 0.

Characterization of optimality:

xi∗

s,t

x
j∗

s,t

=
e
−(

P

(u,v)∈P i
s,t

wu,v)

e
−(

P
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j
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IP Routing: 
Performance

16 · Xu et al.

numerically demonstrate that its approximate version, Downward PEFT, can make
convergence very fast in practice while coming extremely close to TE optimality.

6.1 Simulation Environment

We consider two network objective functions (Φ({fu,v, cu,v})): maximum link uti-
lization, and total link cost (1) (as used in operator’s TE formulation). For bench-
marking, the optimal values of both objectives are computed by solving linear
program (2) with CPLEX 9.1 [ILOG ] via AMPL [Fourer et al. 1993].

To compare with OSPF, we use the state-of-the-art local-search method in [Fortz
and Thorup 2004]. We adopt TOTEM 1.1 [TOTEM ], which follows the same
approach as [Fortz and Thorup 2004], and has similar quality of the results 12. We
use the same parameter setting for local search as in [Fortz and Thorup 2000; 2004]
where the link weights are restricted as integers from 1 to 20 since a larger weight
range would slow down the searching [Fortz and Thorup 2000], initial link weights
are chosen randomly, and the best result is collected after 5000 iterations.

Note that, here we do not evaluate and compare some previous works using non-
even splitting over shortest paths [Wang et al. 2001; Sridharan et al. 2005] since
these solutions do not enable routers to independently compute the flow-splitting
ratios from link weights.

To determine link weights under PEFT, we run Algorithm 1 with up to 5000
iterations of computing the traffic distribution and updating link weights. Abusing
terminology a little, in this section we use the term PEFT to denote the traffic
engineering with Algorithm 1 (including two sub-Algorithms 2 and 3).

We run the simulation for a real backbone network and several synthetic net-
works. The properties of the networks used are summarized in Table IV, which will
be presented in Subsection 6.5. First is the Abilene network (Fig. 2) [Abi ], which
has 11 nodes and 28 directional links with 10Gbps capacity. The traffic demands
are extracted from the sampled Netflow data on Nov. 15th, 2005. To simulate net-
works with different congestion levels, we create different test cases by uniformly
decreasing the link capacity until the maximal link utilization reaches 100% with
optimal TE.

2
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6

8

Fig. 2. Abilene Network

12Proprietary enhancements can bring in factors of improvement, but as we will see, PEFT’s
advantage on computational speed is orders-of-magnitude.
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Fig. 3. Efficiency of capacity utilization of optimal traffic engineering, PEFT and local Search
OSPF

link cost. Note that, within those figures, the maximum optimality gap of PEFT
is only up to 8.8% in Fig. 4(b), which can be further reduced to 1.5% with a larger
step-size and more iterations (which is feasible as the algorithm runs very fast to
be shown in Sec. 6.5).

6.4 Convergence Behavior

Fig. 5 shows the optimality gap in terms of total cost achieved by PEFT, using
different step-sizes, within the first 5000 iterations for Abilene network with the
least link capacities. It provides convergence behavior typically observed. The
legends show the ratio of the step-size over the default setting. It demonstrates
that the algorithms developed in Sec. 5 for the PEFT protocol converges very fast
even with default setting, and reduces the gap to 5% after 100 iterations and 1%
after 3000 iterations. In addition, increasing step-size a little will speed up the
convergency, and as expected, too large a step-size (e.g., 2.5 in the above example)
would cause oscillation. Notice that there is a wide range of step-sizes that can
make convergence very fast. Further fine-tuning of step-size is a future work.

6.5 Running Time Requirement

Besides the convergence behavior, the actual running time is also an important
evaluation criteria. The tests for PEFT and local search OSPF were performed
under the time-sharing servers of Redhat Enterprise Linux 4 with Intel Pentium IV
processors at 2.8∼3.2 Ghz. Note that the running time for local search OSPF is
sensitive to the traffic matrix since a near-optimal solution can be reached very fast
for light traffic matrices. Therefore, we show the range of their average running
times per iteration for qualitative reference.

Fig. 6 shows the optimality gap (on a log scale) achieved by local search OSPF
and PEFT, within the first 500 iterations for a typical scenario (Fig. 4(c)). It
demonstrates that Algorithm 1 for PEFT converges much faster than local search
for OSPF. Table IV shows the average running time per iteration for different
networks. We observe that our algorithm is very fast, requiring at most 2 minutes
even for the largest network (with 100 nodes) tested, while the OSPF local search
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Fig. 4. Comparison of PEFT and Local Search OSPF in terms of optimality gap on minimizing
total link cost
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IP Routing: 
EfficiencyRate of Convergence

0 100 200 300 400 500
10−2

10−1

100

101

102

103

Iteration

O
pt

im
al

ity
 G

ap
 (l

og
 s

ca
le

)

GAP−OSPF

GAP−PEFT

Abilene:                 0.002s vs. 6s

100 node 403 link: 0.042s vs. 39.5s



IP Routing: 
Optimal And Simple

Optimality-Simplicity Tradeoff

Commodity Link-State Routing

Routing OSPF PEFT

Traffic Splitting Arbitrary Even Exponential

Scalability Low High High

Optimal TE Yes No Yes

Complexity Convex Convex

Class Optimization NP Hard Optimization

Optimality-Simplicity Tradeoff

Often there is a price for revisiting assumptions

In Internet traffic engineering case, DFO provides an “nice’ tradeoff

simple 

o p
 t i m

 a l
 

MPLS 

OSPF 

DEFT 



IP Routing: 
Design for Optimizability

Feedback in Engineering Process

restrictive 

relaxation 

non-scalable 

scalable 

solution assumption formulation 
intractable 

tractable 
3B. Geometry of Simplicity

Going “Around”, “Through”, or “Above” Nonconvexity

1 2 3

M. Chiang, “Nonconvex optimization of communication systems”, Advances in Mechanics and

Mathematics, Special Volumn on G. Strang’s 70th Birthday, Ed., D. Gao and H. Sherali, Springer, 2008



Wireless Scheduling
J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Towards utility-

optimal random access without message passing”, Special Issue of 
Wiley Journal of Wireless Communication and Mobile Computing, vol. 

10, no. 1, pp. 115-128, January 2010

Algorithm With Congestion Control



Wireless Scheduling:
Problem

Revisit interference in wireless networks
The other degree of freedom is “time”: who talks when

Interference (0-1 matrix): 
Schedule (0-1 vector):
Set of feasible schedules:
Time fraction of activation:
Throughput: 

A
s

πs

xl

S(A)

maximize
�

l Ul(xl)
subject to xl ≤

�
s∈S:sl=1 πs, ∀l

πs ≥ 0, ∀s�
s∈S πs = 1

variables {xl, πs}

1 2 3



Wireless Scheduling:
How Good Can CSMA Be?

CSMA: Carrier Sense Multiple Access: 
When to contend, and How long to hold the channel

Adaptive CSMA without message passing: 
Adjust contention and holding time                (λ, µ)

Timescale separation assumption: 
Network state converges to stationary distribution before 

parameter update

Real system does not obey this assumption 



Wireless Scheduling:
Algorithm

ql[t+ 1] =

�
ql[t] +

b[t]

ql[t]

�
U

�−1
l

�
ql[t]

V

�
−Dl[t]

��qmax

qmin

λl[t+ 1]

µl[t+ 1]
= exp(ql[t+ 1])

Update “virtual queue length” based on service rate
No message passing needed:

Adjust Poisson contention rate or exponential holding time



Wireless Scheduling:
Performance

maximize V
�

l Ul(xl)−
�

s πs log πs

subject to xl ≤
�

s:sl=1 πs, ∀l
πs ≥ 0, ∀s�

s πs = 1

lim
t→∞

q[t] = q∗ x(q∗)Algorithm converges to such that solves

Approximation error bounded by 

Pick V large enough and grows  

log |S|/V

O(L)



Wireless Scheduling:
Proof

A stochastic subgradient algo. modulated by a Markov chain 

Step 1: show averaging over fast timescale is valid 
Interpolation of discrete q converges a.s. to a continuous q solving a system 

of ODE 

Step 2: show the resulting averaged process converges
The system of ODE describes the trajectory of subgradient solving the dual 

of the approximation problem

Step 3: standard results in convex optimization and duality 
to show convergence and optimality



Wireless Scheduling: 
Discrete Timeslots

More realistic than Poisson clock model
Collision (in addition to algorithmic inefficiency) 
Form a sequence of systems converging to Poisson model
Scale both contention probability and channel holding time

Efficiency-Fairness Tradeoff: 
Short-term fairness: 

1/ave. number of periods of 
no transmission 

βUtility gap: 
bound on suboptimality 

δ

β ≤ δ

C1 exp(C2/δ)



Wireless Scheduling:
Implementation over WiFi
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Wireless Scheduling: 
Performance

30
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Wireless Scheduling: 
Theory Predictions
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Wireless Scheduling: 
Theory-Practice Gaps

Theory         Simulation         Experiment          Legacy

Interference: asymmetric 
Sensing: imperfect
Receiving: SIR based
Holding: imperfect 

Assumed away:
overhead, asymmetry, control 
granularity
Modeled simplistically: 

     imperfect holding and sensing
     SIR collision model with capture

Analyzed loosely: 
convergence speed 
transient behavior 
parameter choice



Network Architecture
M. Chiang, S. H. Low, A. R. Calderbank, J. C. Doyle, “Layering as 
optimization decomposition: A mathematical theory of network 

architecture”, Proceedings of the IEEE, vol. 57, no. 1, pp. 255-312, 
January 2007



Network Architecture:
Analytic Foundations2A. Architecture: Functionality Allocation

Architectures well-understood in control and computation

Plant

Sensor

Controller

Actuator

CPU

Input Output

Memory

Control
Processing

What about network architecture?

Application

Presentation

Session

Transport

Network

Link

  Physical

CO 

IO 

SAI SAI SAI 

100 Mbps 
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IO 
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Network Architecture: 
Functionality Allocation

2A. Math Foundation for Network Architecture

Who should do what and how to connect them

M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as optimization decomposition: A

mathematical theory of network architectures”, Proceedings of the IEEE, Jan. 2007
Network: Generalized NUM

Layering: Decomposition 
Layers: Decomposed subproblems

Interfaces: Functions of primal/dual var.



Network Architecture: 
Layering As Decomposition
2A. Unifying Framework Trims Knowledge Tree

Many cross-layer papers as special cases of 1 workflow

Alternative Formulations
What functionalities and design freedoms to assume?
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The impact of imperfect scheduling on cross-layer rate control 
In wireless networks, Xiaojun Lin and Ness B. Shroff, ToN’06

D. Palomar and M. Chiang, “Alternative distributed algorithms for network utility maximization:

Framework and applications”, IEEE Transactions on Automatic Control, Dec. 2007
http://num.ie.cuhk.edu.hk

http://num.ie.cuhk.edu.hk
http://num.ie.cuhk.edu.hk


Not Just a Hammer

Descriptive -> Explanatory Model
Reverse Engineering Network as Optimizer

Get to the root of knowledge Tree 

Top-Down First-Principled Design
New Angles on Networking Research 



Optimization beyond 
optimality

Modeling
Architecture 
Robustness 

Design for Optimizability
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