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As stated, physically based rendering simulates the movement of light throughout an environ-
ment. It is important that we understand the units involved in measuring light. As we will see, it
is sometimes useful to use different units depending on the application. This also provides us with
mathematical framework for describing the rendering process.

We will assume geometric optics in our measurements. This means that we will use the particle
theory of light. We can get away with this because most visual phenomenon can be modeled with
this assumption in place, diffraction and interference being the notable exceptions. We will also
assume that the speed of light is infinite, which implies that any simulation is in a steady state. This
is usually appropriate since the time it takes light to travel in common scenes is not perceivable.

The following sections touch briefly on several important concepts, which are handled in much
detail by Glassner [3].

1 Solid Angles

Key concepts in the radiometric definitions are the ideas of solid angle and projection. When we
think of a solid angle we usually think of some object projected onto a unit sphere. This projection
is the solid angle of the object as view from the center of the sphere (Figure 1). The units for solid
angles are steradians, sr, which are actually unitless but are usually left in for clarity.

The relationship between a differential area on a sphere and the corresponding differential solid
angle can be described in the following way: A differential area, dA, on a unit sphere is equal to
its solid angle, d��. If dA is on a non-unit sphere, then the difference between the two is an r� term
where r is the radius of a sphere. In Figure 2 describes this in detail. Here we see two hemispheres.
The inside hemisphere has r � �. Since dA has a horizontal side of length r sin � d� and a vertical
side of length r d� the differential area is:

dA � r� sin � d� d� (1)

and the differential solid angle is: d�� � sin � d� d�

2 Projections

The relationship between the area of surface element dA and the projection of that surface onto a
plane is:

proj
A
� cos � dA � (2)

as shown in Figure 3.
Finally, we can consider a differential area dA� which does not lie on a great sphere. Projecting

this onto a sphere is equivalent to projecting it onto a plane which is perpendicular to the ray running
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Figure 2: Relationship between area and solid angle on a sphere
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Figure 3: Projection of a surface element onto a plane

from the center of the sphere to the center of dA�. Thus from Equations 1, 3 and 2 we get the
relationship between a differential solid angle d��� and an arbitrarily oriented differential area dA�:

d��� �
dA� cos ��

jjx� � xjj�
� (3)

where x is the sphere center and x� is the center of dA�.

3 Radiometry

In general, physically based computer graphics algorithms do not chase light particles or photons
around the environment. Usually the computational quantity of flow that is measured throughout an
environment is radiant flux or radiant power which is generally denoted by the Greek letter � and
measured in Watts. Radiant power has no meaning at a particular point in an environment, therefore
we need different quantities to represent the interaction of radiant power and surfaces. The most
important of these quantities is radiance.

4 Radiance

Radiance is a fundamental quantity usually associated with a light ray. The radiance leaving or
arriving at a given point, x, traveling in a given direction, ��, can be defined as the power per unit
projected area perpendicular to the ray per unit solid angle in the direction of the ray. Following
notation similar to the IES1 standard we have:

L�x� ��� �
d���x� ���

dA cos � d��
� (4)

1The Illumination Engineering Society or IES notation is the standard for illumination engineering. Notation and
definitions can be found in the ANSI/IES report [5].
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Figure 4: Radiance between differential surfaces.

where � is power, dA is the differential area surrounding x, � is the angle between the ray and the
surface normal at x, and d�� is the differential solid angle in the direction of the ray.2

Radiance is a convenient quantity to associate with a light ray because it remains constant as it
propagates along a direction (assuming a vacuum). To see that this is true we need to look closely
at the definitions. We can reorganize the above definition in terms of radiant flux:

d��x� ��� � L�x� ��� cos �d��dA � (5)

Using the geometry of Figure 4 and assuming a vacuum, the law of conservation of energy says
that the flux leaving surface one in the direction of surface two, must arrive at surface two, more
concisely:

d��x�� ���� � d��x�� ���� �

Thus
L�x�� ���� cos ��d���dA� � L�x�� ���� cos ��d���dA� � (6)

From the previous definitions we see that d��� � �dA� cos ����r
� and d��� � �dA� cos ����r

�

where r� � x� � x
�

�
, �� � ��n� � ���� and �� � ��n� � ����. Dividing each side of Equation 6

by dA��cos ��� dA� cos �����r
� we see that L�x�� ���� � L�x�� ����. Notice that the definition of

radiance lends itself to some confusion about the direction of flow. For this reason Arvo [1] uses
the term surface radiance, Ls�x� ���, to refer to light leaving x in direction �� and field radiance,
Lf �x� ���, to refer to light arriving at x from direction ��.

Radiance is considered a fundamental quantity not only because it is convenient but because all
other radiometric and photometric quantities can be derived from it as can be seen in the appendix.

2Note that Equation 4 should be written as a second order partial derivative in the form �
�
�

�A cos � ���
, but we will stick

with convention.
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Figure 5: Geometry for BRDF.

5 BRDF and BTDF

Now that we have radiance to characterize the flow of light traveling between two surfaces a function
is needed to describe the reflection of light off a surface. We would expect that the reflection of light
off a surface is proportional to the light arriving at the surface. The function that describes this
proportionality is the bidirectional reflectance distribution function or BRDF, Figure 5

fr�x� ��
�� ��� �

dLr�x� ���

Lf �x� ���� cos �d���
� (7)

where Lf is the field radiance and Lr is the reflected radiance. Note that Lr is used instead of the
surface radiance Ls. The reason for this distinction will become clear in the next section. Note
also that the denominator of Equation 7 is irradiance as described in the appendix. A physically
plausible BRDF maintains two important properties:

1. The BRDF must follow the Helmholtz reciprocity principle. This states that the BRDF will
be the same if the incident and reflected light is reversed. Stated,

fr�x� ��
�� ��� � fr�x� ��� ��

�� (8)

2. The BRDF must uphold the law of conservation of energy. Therefore the outgoing radiance
must be less than or equal to the incoming radiance. If the BRDF is integrated over the
hemisphere of reflected directions we will get the total reflectance for an incoming direction
���. This value must be less than or equal to one:

R�x� ���� �

Z
�

fr�x� ��
�� ��� cos �d���

� ��� � (9)

Several models for BRDF are described in Glassner [3] including the most commonly used
models of Lambert and Phong, as well as more complicated models employing Fresnel equations
and the empirical models of Ward [11]. An additional model which is not covered by Glassner
but deserves mention is the modified Phong model of Lafortune and Willems [7]. Lafortune and
Willems modify the Phong model so that it obeys the Helmholtz reciprocity principle. As pointed
out by Shirley [10] it is difficult to tell whether or not it is necessary to have a physically plausible
BRDF in order to produce realistic images.
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For some surfaces that transmit light, the BRDF must be combined with the bidirectional trans-
mission distribution function, BTDF. This allows us to render images of glass, lamp shades and
ultra-thin metals.

6 The Rendering Equation

Previously, radiance was defined as means of expressing the light traveling between two surface. In
the previous section, the BRDF was defined as the interaction of light with a surface. These two
ideas can be combined to form an equation that describes the flow of light throughout an environ-
ment. Notice that by rewriting Equation 7 we get the following:

dLr�x� ��� � fr�x� ��
�� ���Lf �x� ��

�� cos �d���

This is the reflected radiance in terms of the incoming radiance from one ray and the BRDF.
The total reflected radiance at a point, x, in direction, ��, combine with any emitted radiance, Le, to
form surface radiance, Ls:

Ls�x� ��� � Le�x� ��� �

Z
�i

fr�x� ��
�� ���Lf �x� ��

�� cos �d��� � (10)

where cos � � ��n � �����. This is the rendering equation in terms of directions as first introduced by
Immel et al.[4]. Sometimes it is more convenient to express Equation 10 in terms of surfaces. We
can do this by using the definition from Equation 3 to get:

Ls�x� ��� � Le�x� ��� �

Z
A
g�x�x��fr�x� ��� ��

��Lf �x� ��
��
cos � cos ��dA

jjx� � xjj�
� (11)

where jjx� � xjj is the distance from x to x�, cos �� � ��n� � ����, and

g�x�x�� �

�
� if x is visible to x

�

� otherwise �

This geometry term is necessary since some surfaces might be blocked. Equation 11 is the form
similar to that of Kajiya’s landmark paper[6]. The geometry for the rendering equation can be seen
in Figure 6.

We must keep in mind that Lf �x� ��
�� � Ls�x

�� ���� in Equations 11 and 10 . By replacing Lf

with Ls we see that Equations 11 and 10 are integral equations.

A Appendix: Radiometry and Photometry

This appendix was written in an attempt to clarify the relationship between radiometry and photom-
etry. This clarification was necessary because our ray tracer associates a value of radiance with each
ray traced. However, the illumination engineering community specifies luminaires with photometric
values.

In order to use the value associated with a luminaire sample, we had to transform it into spectral
radiance. It should be noted that in the literature the term radiance usually implies spectral radi-
ance, averaged over a band of wavelengths (such as the red, green, or blue portions of the visible
spectrum).

The first step was to understand the radiometric and photometric terminology according to
ANSI/IES (1986)[5].
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Figure 6: Geometry for the rendering equation

A.1 Important Radiometric Terms

1. Radiant energy, Q. Energy traveling in electro-magnetic waves, measured in joules.

(a) Spectral radiant energy,Q� � dQ�d�,measured in joules per nanometer, joules�nm.

2. Radiant Flux (radiant power), � � dQ�dt. The time rate of flow of radiant energy, mea-
sured in joules per second or watts � W .

(a) Spectral Radiant Flux, �� � d��d�, measured in W�nm.

3. Radiant flux density, d��dA. The quotient of the radiant flux incident on or emitted by a
differential surface element dA at a point, divided by the area of the element. The preferred
term for radiant flux density leaving a surface is exitance, M . The preferred term for radiant
flux density incident on a surface is irradiance, E. Measured in watts per square meter,
W�m�.

(a) Spectral radiant flux density, d����dA d��. In terms of exitance it is M��d�. In
terms of irradiance it is E��d�. Measured in W��m� nm�.

4. Radiant intensity, I � d��d�. The radiant flux proceeding from a source per unit solid
angle in a given direction. Measured in watts per steradian, W�sr.

(a) Spectral radiant intensity, I� � dI�d�. Measured in W��sr nm�.

5. Radiance, L � d����d��dA cos ���. Power per unit projected area perpendicular to the ray
per unit solid angle in the direction of the ray. Measured in W��m� sr�.

(a) Spectral radiance, L�.
L� � d����d��dA cos ��d��. Measured in W��m� sr nm�.
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A.2 Important Photometric Terms

Note that the symbols for radiometric and the corresponding photometric terms are the same. In
cases where the terms might be confused radiometric terms will be identified by the subscript e and
photometric terms will be identified by the subscript v.

1. Luminous flux �. Radiant flux evaluated in terms of a standardized visual response. Mea-
sured in lumens, lm.

�v � Km

Z
�

�e��V ��� d�

where
�v = lumens
�e�� = watts per nanometer
� = nanometers
V ��� = the spectral luminous efficiency
Km = the spectral luminous efficacy in lumens per watt (lm�W )

The above definition of luminous flux is for photopic vision and Km has the value ��� lm�W .
For scotopic vision V ��� is replaced by V ���� and Km is replaced by Km� � �	
� lm�W .

2. Luminous flux density, d��dA This item is usually referred to as illuminance, E, if lumi-
nous flux density is incident on a surface element, and luminous exitance, M , if luminous
flux density is leaving a surface element. Measured in lm�m�

3. Luminous intensity, I � d��d�. The luminous flux per unit solid angle in a certain direc-
tion. Measured in lm�sr or candelas.

4. Luminance, L � d����d��dA cos ��
. The definition is the same as radiance. The units are
lm��m� sr�.

A.3 Deriving Everything from Radiance

All of the above definitions can be derived from spectral radiance. This is an important exercise
which will help clarify the relationship between radiance and the other radiometric and photometric
terms. In the following list, spectral radiance will be referred to as the function Le�x� �� ��.3

1. Spectral Radiometry

� Spectral radiant energy

Qe�� �

Z
T

Z
�

Z
x�A

Le�x� �� �� cos � dA d� dt

� Spectral radiant flux

�e�� �

Z
�

Z
x�A

Le�x� �� �� cos � dA d�

3We define only spectral radiometry since the corresponding radiometric terms can be found by integrating the spectral
radiometric terms over the appropriate range of the light spectrum
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� Spectral radiant flux density (in terms of irradiance)

Ee�� �

Z
�

Le�x� �� �� cos � d�

� Spectral radiant intensity

Ie�� �

Z
x�A

Le�x� �� �� dA

2. Photometry

� Luminous flux

�v � Km

Z
�

Z
�

Z
x�A

Le�x� �� ��V ��� cos � dA d� d�

� Luminous flux density(in terms of illuminance)

Ev � Km

Z
�

Z
�

Le�x� �� ��V ��� cos � d� d�

� Luminous intensity

Iv � Km

Z
�

Z
x�A

Le�x� �� ��V ��� dA d�

� Luminance
Lv � Km

Z
�

Le�x� �� ��V ��� d�

A.4 IES Luminaires and Spectral Radiance

The IES photometric data file format [8] defines the three-dimensional distribution of light emitted
by a luminaire. The distribution is defined for a point light source even though most luminaires are
clearly not point sources. The file format specifies luminous intensities Iv for a set of vertical and
horizontal directions, thus allowing for non-uniform distributions. To compute spectral radiance
from this information we must make two assumptions: the distance from the luminaire to a point
on the illuminated surface satisfies the “five-times” rule, and the spectral output of the luminaire is
known. The five-times rule states that the luminaire can be modeled as a point source if distance
from the luminaire to the point on the illuminated surface is greater than five times the maximum
projected width of the luminaire as seen from the point. (In other words, the luminaire must not
exceed a subtended angle of 0.2 radians as seen from the point.) If this rule is satisfied, the error for
the predicted illuminance will be less than �� percent [2].

The five-times rule allows us to model the luminaire as a photometrically homogeneous lumi-
nous aperture. That is, any point on the luminous surface of the luminaire will exhibit the same
three-dimensional photometric distribution of luminous intensity as does the point source being
used to represent the luminaire in the IES photometric data file.

Usually the type of lamp used in the luminaire will be defined in the IES file ( although different
lamps may be often be used when luminaire is installed). By maintaining a database of spectra that
correspond to particular lamp types, we can satisfy the second assumption. Spectra from a number
of generic lamp types are presented in the IES Lighting Handbook [9], while spectra for specific
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lamps are often available from the lamp manufacturers. These spectra are given in terms of watts
per nanometer, or spectral radiant flux (�e��). This allows us to derive the spectral radiant exitance
Le�� as follows:

The known quantities are luminous intensity Iv � d�v�d�, spectral radiant flux �e�� , the
maximum spectral luminous efficacy Km � ���, and the photopic luminous efficiency curve V ���.
The goal is spectral radiance Le��.

Based on our assumption that the luminous surface of the luminaire is photometrically homo-
geneous, we have:

Le�� �
d Ie��

dA cos �
�

Ie��
A cos �

(12)

where A is the luminous surface area of the luminaire as seen from the point on the illuminated
surface and � is the mean angle between the luminous surface normal and the direction of the point.
(Remember that we are modeling the luminaire as a point source.) Therefore, we will have a solution
for Le�� if we can solve for the spectral radiant intensity Ie��.

We also have:
Lv �

dIv
dA cos �

�
Iv

A cos �
(13)

Now it is evident that the luminance Lv at the point on the surface is directly proportional to
the amount of luminous flux �v received at that point. The same argument must therefore hold for
spectral radiance: Le�� is directly proportional to the spectral radiant flux �e��. This gives us:

Le��

Lv

�
�e��

�v

(14)

Rearranging terms gives us:

Le�� �
Lv�e��

�v

�
Iv�e��

�A cos ���v

(15)

However:
�v � Km

Z
�

�e��V ��� d� (16)

and so spectral radiance can be defined as:

Le�� �
Iv�e��

�A cos ��Km

R
� �e��V ��� d�

(17)
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