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Figure 1: Different configurations of our camera array. (a) Tightly packed cameras with telephoto lenses and splayed fields of view. This
arrangement is used for high-resolution imaging (section 4.1). (b) Tightly packed cameras with wide-angle lenses, which are aimed to share
the same field of view. We use this arrangement for high-speed video capture (section 4.2) and for hybrid aperture imaging (section 6.2). (c)
Cameras in a widely spaced configuration. Also visible are cabinets with processing boards for each camera and the four host PCs needed to
run the system.

Abstract

The advent of inexpensive digital image sensors and the ability
to create photographs that combine information from a number of
sensed images are changing the way we think about photography.
In this paper, we describe a unique array of 100 custom video cam-
eras that we have built, and we summarize our experiences using
this array in a range of imaging applications. Our goal was to ex-
plore the capabilities of a system that would be inexpensive to pro-
duce in the future. With this in mind, we used simple cameras,
lenses, and mountings, and we assumed that processing large num-
bers of images would eventually be easy and cheap. The applica-
tions we have explored include approximating a conventional single
center of projection video camera with high performance along one
or more axes, such as resolution, dynamic range, frame rate, and/or
large aperture, and using multiple cameras to approximate a video
camera with a large synthetic aperture. This permits us to capture a
video light field, to which we can apply spatiotemporal view inter-
polation algorithms in order to digitally simulate time dilation and
camera motion. It also permits us to create video sequences using
custom non-uniform synthetic apertures.
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1 Introduction

One of the economic tenets of the semiconductor industry is prod-
ucts that sell in large volumes are cheap, while products that sell in
lower volumes are more expensive, almost independent of the com-
plexity of the part. For computers, this relationship has changed
the way people think about building high-end systems; rather than
building a custom high-end processor, it is more cost effective to
use a large number of commodity processors.

We are now seeing similar trends in digital imaging. As the pop-
ularity of digital cameras grows, the performance of low-end im-
agers continues to improve, while the cost of the high-end cameras
remains relatively constant. In addition, researchers have shown
that multiple images of a static scene can be used to expand the
performance envelope of these cameras. Examples include creat-
ing images with increased resolution [Szeliski 1994] or dynamic
range [S.Mann and R.W.Picard 1994; Debevec and Malik 1997]. In
other work, Schechner and Nayar used spatially varying filters on
a rotating camera to create high-resolution panoramas that also had
high dynamic range or high spectral resolution [Schechner and Na-
yar 2001]. Another use for multiple views is view interpolation to
create the illusion of a smoothly moving virtual camera in a static



or dynamic scene [Levoy and Hanrahan 1996; Gortler et al. 1996;
Rander et al. 1997; Matusik et al. 2000].

Most of these efforts employ a single moving high-quality cam-
era viewing a static scene. To achieve similar results on dynamic
scenes, multiple cameras are required. This motivated us in 1999
to think about designing a flexible array containing a large num-
ber of inexpensive video imagers. The multiple camera array that
resulted consists of 100 video cameras, each connected to its own
processing board. The processing boards are capable of local image
computation, as well as MPEG2 compression.

In section 2, we review prior work in building multiple video cam-
era systems. While these systems are generally directed at specific
applications, they provide valuable insights into the requirements
for a flexible capture system. Section 3 gives an overview of our
multiple camera array and explains in a little more depth the fea-
tures we added to make it a general purpose research tool.

The rest of this paper focuses on our recent results using the cam-
era array in different imaging applications. We start by exploring
ways of using multiple cameras to create an aggregate virtual cam-
era whose performance exceeds the capability of an individual cam-
era. Since these applications intend to approximate a camera with
a single center of projection, they generally use densely packed
cameras. In particular, section 4 explores the creation of a very
high-resolution video camera in which the cameras are adjusted to
have modestly overlapping fields of view. We then aim the cameras
inward until their fields of view overlap completely, and we use
our system’s fine timing control to provide a virtual video camera
with a very high frame-rate. In both of these applications, the large
number of cameras provide some opportunity that would not be
present in a single camera system. For the virtual high-resolution
imager, one can perform exposure metering individually on each
camera, which for scenes with spatially varying brightness allows
us to form a mosaic with high dynamic range. For the virtual high-
speed imager, one can integrate each frame for longer than one over
the frame-rate, thereby capturing more light per unit time than is
possible using a single high-speed camera.

Sections 5 and 6 consider applications in which the cameras are
spread out, thereby creating a multi-perspective video camera. One
important application for this kind of data is view interpolation,
whose goal is to move the virtual observer smoothly among the cap-
tured viewpoints. For video lightfields, the problem becomes one of
spatiotemporal interpolation. Section 5 shows that the optimal sam-
pling pattern to solve this problem uses cameras with staggered, not
coincident, trigger times. It also describes a spatiotemporal inter-
polation method that uses a novel optical flow variant to smoothly
interpolate data from the array in both time and virtual camera po-
sition.

In section 6 we consider combining the images from multiple view-
points to create synthetic aperture image sequences. If we align,
shift, and average all the camera images, then we approximate a
camera with a very large aperture. By changing the amount of the
shift, we can focus this synthetic camera at different depths. Us-
ing the processing power on each camera board, we can focus the
synthetic aperture camera in real time, i.e. during video capture.
Alternatively, we can shape the aperture to match particular char-
acteristics of the scene. For example, we freeze a high-speed fan
embedded in a natural scene by shaping the aperture in both time
and space.

2 Early Camera Arrays

The earliest systems for capturing scenes from multiple perspec-
tives used a single translating camera [Levoy and Hanrahan 1996]
and were limited to static scenes. Dayton Taylor extended this idea
to a dynamic scene by using a linear array of still cameras [Taylor
1996]. By triggering the cameras simultaneously and hopping from
one camera image to the next, he created the illusion of virtual cam-
era movement through a “frozen” dynamic scene. Manex Entertain-
ment used more widely spaced cameras and added an adjustable
trigger delay between cameras to capture images corresponding to
a virtual high-speed camera flying around their scenes. Both of
these systems used still cameras, so they were limited to capturing
one specific virtual camera trajectory through space and time that
was fixed by the camera arrangement.

For capturing a more general data set, researchers turned to arrays
of video cameras. Like still cameras, video cameras must be syn-
chronized, but they also present a new challenge: enormous data
rates. The pioneering multiple video camera array design is the
Virtualized RealityTMproject [Rander et al. 1997]. Their goal was
to capture many views of a scene for video view interpolation. The
first version of their system records video using VCRs, giving them
practically unlimited recording durations but low quality. Their sec-
ond version uses 49 video cameras capturing to PC main memory.
This system has better quality (VGA resolution at 30 frames per
second), but is limited to nine-second capture durations. Every third
camera captures color video. To handle the bandwidth of the video
cameras, they require one PC for every three cameras.

While the Virtualized RealityTMproject uses relatively high quality
cameras, two other groups experimented with large arrays of inex-
pensive cameras. Yang et al.’s Distributed Light Field Camera ren-
ders live dynamic light fields from an 8x8 array of commodity we-
bcams [Yang et al. 2002]. Zhang and Chen’s Self-Reconfigurable
Camera Array uses 48 commodity Ethernet cameras with electronic
horizontal translation and pan controls to improve view interpola-
tion results [Zhang and Chen 2004a; Zhang and Chen 2004b]. Al-
though the design of these systems make them much cheaper than
Virtualized RealityTMin terms of per camera costs, significant com-
promises were made to use these commodity cameras. First, neither
of the arrays could be synchronized, causing artifacts in the view
reconstructions. Furthermore, since they were looking at single ap-
plications, neither system addressed the bandwidth challenges of
building a general purpose large camera array. Yang et al. chose to
implement a “finite-view” system, meaning each camera transmits
only enough data to reconstruct a small number of light field views
per frame time. Zhang and Chen’s cameras use JPEG compression,
but their choice of Ethernet and a single computer to run the array
limits them to a resolution of 320x240 pixels at 15-20 frames per
second.

Results from these efforts helped guide our system design. Since
our goal was to create a general purpose system, we wanted tight
control over both the timing of cameras and their positions. We also
needed to be able to record the data from all the cameras, but with
far fewer PCs than the Virtualized RealityTMsystem. The system
that we designed to address these goals is described next.

3 The Multiple Camera Array

While we had wanted to use “off-the-shelf” technology to build our
camera array, it became clear early on that none of the commercial
video cameras would have both the timing and positioning flexi-
bility that our system required. As a result, we decided to build



Figure 2: Our camera tiles contain an Omnivision 8610 image sen-
sor, passive electronics, and a lens mount. The ribbon cables carry
video data, synchronization signals, control signals, and power be-
tween the tile and the processing board. To keep costs low, we use
fixed-focus, fixed-aperture lenses.

a custom imaging array, but one in which we leveraged existing
standards as much as possible to minimize the amount of custom
hardware that the system required for operation. A description of a
preliminary version of this system was published in Wilburn et al.
[2002].

3.1 Hardware Components

Our system consists of three main subsystems: cameras, local pro-
cessing boards, and host PCs. The cameras are mounted on small
printed circuit boards to give us maximum flexibility in their ar-
rangement. Each camera tile is connected to a local processing
board through a 2m long ribbon cable. These processing boards
configure each of the cameras and can locally process the image
data before sending it out to the host computer in either its raw
form or as an MPEG2 video stream. A set of 4 PCs hosts the sys-
tem, either storing the collected data to disk, or processing it for
real time display.

Camera Tiles. One of the most critical decisions for the array was
the choice of image sensors and their optical systems. While we
thought it was reasonable to assume that computation would con-
tinue to get cheaper, we found it more difficult to make that same
argument for high-quality lenses. Thus, we choose to use inexpen-
sive lenses and optics as well as inexpensive sensors. In particular,
we chose CMOS image sensors with Bayer Mosaic color filter ar-
rays[Bayer 1976]. Although they have more image noise than CCD
imagers, CMOS sensors provide a digital interface rather than an
analog one, and they offer convenient digital control over gains,
offsets, and exposure times. This makes system integration easier.

Figure 2 shows one of our camera tiles. For indoor applications, one
typically wants a large working volume and a large depth of field.
For these reasons, we use Sunex DSL841B lenses with a 6.1mm
focal length, an F/# of 2.6, and relatively wide diagonal field of
view of 57 ◦. For applications that require a narrow field of view
(usually outdoors), we use Marshall Electronics V-4350-2.5 lenses
with a 50mm fixed focal length, an F/# of 2.5, and a diagonal field
of view of 6 ◦. Both sets of optics include an IR filter.

The camera tiles measure 30mm on a side and mount to supports
using three spring-loaded screws. These screws not only hold the
cameras in place but also let us change their orientations roughly
20◦ in any direction. For tightly packed camera arrangements, we
mount the tiles directly to sheets of acrylic. For more widely spaced
arrangements, we have designed plastic adapters that connect the
tiles to 80/20 (an industrial framing system) components.
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Figure 3: Camera processing board block diagram

Figure 4: Camera processing board

Local Processing Boards. Figure 3 shows a block diagram of a
complete camera system, and figure 4 shows the processing board
for one camera. The processing board has five major subsystems:
a micro-controller and its memory, an MPEG2 compressor, an
IEEE1394 interface, a clock interface, and an FPGA which acts
as master data router and programmable image computation unit.
By choosing established standards, most of these subsystems could
be implemented with existing off the shelf chip sets.

We chose the IEEE1394 High Performance Serial Bus [Anderson
1999] (also known as FireWire R© and i-Link R©) as our interface
between the processing boards and the PCs. It guarantees a default
bandwidth of 40MB/s for isochronous transfers, i.e. data that is sent
at a constant rate. This is perfect for streaming video, and indeed
many digital video cameras connect to PCs via IEEE1394. It is also
well suited for a modular, scalable design because it allows up to
63 devices on each bus and supports plug and play. Another benefit
of IEEE1394 is the cables between devices can be up to 4.5m long,
and an entire bus can span over 250m. Thus, cameras based on such
a system could be spaced very widely apart, possibly spanning the
side of a building.

Even with this high-speed interface, an array of 100 video cameras
(640x480 pixel, 30fps, one byte per pixel, Bayer Mosaic) would
require roughly 25 physical buses to transfer the roughly 1GB/sec
of raw data, and a comparable number of PCs to receive it. Rather
than limiting the image size or frame rate, we decided to compress
the video using MPEG2 before sending it to the host. The default
4Mb/s bitstream produced by our SONY encoders translates into a
compression ratio of 17.5:1 for 640x480, 30fps video. To ensure
that compression does not introduce artifacts into our applications,
we designed the cameras to simultaneously store up to 20 frames
of raw video to local memory while streaming compressed video.
This lets us compare MPEG2 compressed video with raw video as
an offline sanity check.
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An embedded microprocessor manages the components in the cam-
era and communicates with the host PCs over IEEE1394. The
FPGA is used to route the image data to the correct destination,
usually either the IEEE1394 chipset or the MPEG2 compression
chip. It can also be configured to operate directly on the image data
using its local DRAM for storing temporaries and constants and the
SRAM as a frame buffer. Code in a small boot ROM configures the
IEEE1394 interface so that host PCs can download a more sophis-
ticated executable and configuration code to the board.

3.2 System Architecture

Figure 5 shows the high-level architecture of our system. Each of
our cameras is a separate IEEE1394 device with three ports. The
cameras are connected in a tree, with one port connecting to a par-
ent and one or two ports leading to child nodes. The parent port
of the root node is connected to the host computer, which has two
striped IDE hard drives to capture the image data. For large arrays,
we must use multiple PC’s and IEEE1394 buses. Theoretically, the
40MB/s streaming bandwidth of IEEE1394 should accommodate
62 compressed video streams, but implementation details (bus arbi-
tration and our inability to get cycle-accurate control over the bus)
limits us to 30 cameras per bus. We run a networked camera control
application that lets us drive the operation of the entire array from
one PC.

The timing requirements for the array were stricter than could be
achieved using IEEE1394 communication, especially with multiple
PCs. To achieve the desired timing tolerance, we route a common
clock and trigger signals to the entire array using an extra set of
CAT5 cables. These cables roughly match the IEEE1394 topology,
except they form a single tree even if multiple IEEE1394 buses are
used. A single “master” root board in the array generates its own
27MHz clock and sends it to two children via CAT5 cables, which
then buffer the clock and send it to two more children, and so on.
The master also generates a trigger which is buffered and repeated
to all other boards. This trigger is used to synchronize the cameras
and provides a timing signal with no more than 200ns of skew be-
tween any two processing boards. To put this in perspective, 200ns
is one thousandth of our minimum integration time of 205µs.

Most systems would use the trigger to synchronize all of the cam-
eras. In fact the early prototype of our system [Wilburn et al. 2002]
used it for this purpose as well. The final system provides an arbi-
trary, constant temporal phase shift for each camera. Because the
timing signals for the image sensors are generated by the FPGAs,
this was done by adding programmable timer reset values to the
FPGA code. Thus, using just one trigger signal, we can reset all of
the cameras to arbitrary phase offsets.

3.3 Results

Our multiple camera array captures VGA video at 30 frames per
second (fps) from 100 cameras to four PCs. The default MPEG bit
rate is 4Mb/s, but we are free to alter the bit rate or even stream
I-frame only video. At 4Mb/s, we can capture sequences up to two
and a half minutes long before we reach the 2GB file size limit of
our operating system. We have not yet needed to extend this limit.

4 Improved Imaging Performance

By combining data from an array of cameras, we can create an
aggregate virtual camera with greatly improved performance. Al-
though one could design optical systems that ensure a common cen-
ter of projection for all of the cameras, these systems become costly
and complex as the number of cameras grows. Instead, we pack the
cameras as closely as possible to approximate a single center of pro-
jection and compensate for parallax in software. Here, we discuss
two high-performance applications: high-resolution, high-dynamic
range video capture; and high-speed video capture.

4.1 High-Dynamic Range and High-Resolution

Video

If we tightly pack our cameras and aim them with abutting or par-
tially overlapping fields of view, we create a high-resolution video
camera. Using this configuration and existing techniques from the
image mosaicing literature, we can register and blend the images
to create a single image of high resolution. One advantage of us-
ing many cameras for this task is that we can meter them individu-
ally. This allows us to capture scenes with a greater dynamic range
than our cameras can record individually, provided that the dynamic
range in each camera’s narrow field of view is small enough. For
scenes in which even the local dynamic range exceeds our sensors’
capabilities, we can trade resolution for dynamic range by increas-
ing the overlap of the cameras’ fields of view, so that each viewing
ray is observed by multiple cameras with different exposure set-
tings.

To demonstrate this idea, we arranged our cameras in a dense 12x8
array with approximately 50% overlapping fields of view, shown in
figure 1(a). Each camera has a telephoto lens with a roughly six
degree diagonal field of view. With 50% overlap between adjacent
cameras, most points in the scene are observed by four cameras, and
the entire array has a total field of view of 30 degrees horizontally
and 15 degrees vertically.

Color Calibration. Because the inexpensive sensors in our array
have varying color responses, we must color match them to pre-
vent artifacts in the image mosaic. Color calibration is important
in any application involving multiple cameras, but it is critical in
this application, since different parts of the image are recorded by
different cameras. We must also determine the response curves of
our cameras if we wish to create high dynamic range images. With
gamma correction turned off in the cameras, the response curves of
our sensors are reasonably linear except at the low and high ends
of their output range. We have devised an automatic color match-
ing routine that forces this linear response to be identical for all of
the cameras and color channels by iteratively adjusting the offsets
and gains for each color channel in every camera. Our goal is to
ensure uniformity, not absolute accuracy–our final mosaics can be
converted to another color space with one last transformation.



Each iteration of our calibration routine takes images of a white
target under several different exposure levels. The target is placed
close enough to the array to fill the field of view of all cameras.
The exposure setting is the actual duration for which the sensor in-
tegrates light and is very accurate. The routine calculates the slopes
and offsets of the sensor responses, then computes new settings to
match a target response. We choose a line mapping the minimum
response to 20 and the maximum to 220, safely inside the linear
range of our sensors. Doing this for each channel using images of
a white target also white balances our sensors. The entire process
takes less than one minute.

Assembling HDR Image Mosaics. We use Autostitch [Brown
and Lowe 2003]) to create our image mosaics. Autostitch uses
a scale-invariant feature detector to detect corresponding features
in overlapping images, bundle adjustment to estimate globally op-
timal homographies to align all of the images, and a multi-band
blending algorithm to combine the registered images into a single
mosaic. The cameras need not be precisely aimed, because Au-
tostitch finds appropriate homographies to perform seamless image
stitching. Given the 34mm separation of our cameras and our scene,
roughly 120m away, we can tolerate +/- 20m of depth variation with
less that 0.5 pixels of disparity in the mosaiced image.

For our application, we have modified Autostitch in two ways.
First, we use our response curves and the cameras’ exposure du-
rations to transform pixel values from the cameras into a floating
point, relative irradiance value before blending. Thus, the output
of the blending is a floating point image. Our second modification
is replacing the weights for the multi-band blend with a confidence
measure that is high for pixel values in the middle of the sensor
response and low for saturated or underexposed pixels, as well as
being low for pixels at the edges of each camera.

Results. Figure 6 shows a comparison of 3800 x 2000 pixel mo-
saics captured with uniform and individually selected camera ex-
posure times. The uniform exposure loses details in the brightly lit
hills and dark foreground trees. The individually metered cameras
capture a wider range of intensities, but they still have saturated and
under-exposed pixels where their dynamic range is exceeded. An
even better picture can be acquired by taking advantage of the cam-
eras’ overlapping fields of view to image each point with different
exposure durations. Figure 7 (a) shows a mosaic captured using
cameras with one of four exposure times (0.20ms, 0.62ms, 1.4ms,
and 3.07ms). The increased local dynamic range can be seen in the
covered walkway in the inset (c).

To evaluate the overall image quality, we took a picture using a 3504
x 2336 pixel Canon 20D configured with nearly the same field of
view and compared it to one frame of our high-resolution video
(figure 7(b)). The results are encouraging. While the insets show
that the Canon image is superior, the effective resolution difference
is modest. Plotting pixel intensities across edges in the two im-
ages showed that the Canon’s resolution is roughly 1.5 times better.
Since we could easily add cameras, or reduce overlap to increase
resolution, this degraded resolution is not a serious limitation. In
fact, resolution chart measurements with our cameras indicate that
their effective resolution is about 400 pixels horizontally, not 640,
so the resolution of the mosaic is not much worse than what we see
from a single camera.

What is more surprising is that the contrast of our image mosaic
is noticeably worse than the D20. This is due to light leakage and
aberrations in the lenses. Overall, these results show that it is pos-
sible to use large numbers of inexpensive cameras to build a virtual
camera of both high dynamic range and high resolution. In this
example we use large overlaps so four cameras view each pixel.
Our array can easily be configured to reduce the overlap and create

larger mosaics. For example, reducing the camera overlap to 10%
would yield very large mosaics (roughly 6900 x 3500 pixels) us-
ing the same number of cameras. (Remember that these are video
cameras; we know of no non-classified video camera of comparable
resolution.) This flexibility raises the question of how to optimally
allocate camera views for imaging. This answer in turn depends
on the dynamic range of the scene and the algorithm used for adap-
tively setting the exposure times. We are starting to look at adaptive
metering algorithms for camera arrays to address this issue.

4.2 High-Speed Video

The previous application takes advantage of our flexible mounting
system and exposure control to increase the resolution and dynamic
range of video capture. The timing precision of our array offers an-
other opportunity for creating a high-performance aggregate cam-
era: high-speed video capture. We have previously described a
method for configuring the array as a single, virtual, high-speed
video camera by evenly staggering the camera trigger times across
the 30Hz frame time [Wilburn et al. 2004]. Using 52 tightly packed
cameras oriented with wholly overlapping fields of view, we simu-
lated a 1560 frame per second (fps) video camera.

One benefit of using a camera array for this application is that frame
rate scales linearly with the number of cameras. Also, compress-
ing the video in parallel at each camera reduces the instantaneous
data rate and permits us to stream continuously to disk for several
minutes. By contrast, typical commercial high-speed cameras are
limited to capture durations that fit in local memory, often as low
as a few seconds, and require some means to synchronize the cap-
ture with the high-speed event. Finally, unlike a single camera, the
exposure time for each frame can be greater than the inverse of the
high-speed frame rate. In other words, we can overlap frame times
among the cameras. This allows us to collect more light and reduce
noise in our images at the cost of increased motion blur. By tem-
porally deconvolving the captured video, we can recover some of
the lost temporal resolution [Wilburn et al. 2004; Shechtman et al.
2002].

As with the image mosaics before, we must account for the slight
parallax between views from different cameras. We assume a rel-
atively shallow or distant scene and use planar homographies to
align the images from all cameras to the desired object plane. This
leads to artifacts for objects not at the assumed scene depth. In the
next section, we extend this high-speed method to the case of more
widely spaced cameras, and in section 5.2 we describe a technique
for interpolating between the views produced by the cameras. As
we will see, this technique can also be used to correct the misalign-
ments in our high-speed video.

5 Spatiotemporal Sampling

We now turn to a different regime for the array: cameras spaced
to sample a very wide spatial aperture. Data captured from such
arrangements can be used for synthetic aperture photography, view
interpolation, and analysis of scene structure and motion. We treat
synthetic aperture photography in section 6. For the other two ap-
plications, a major challenge is establishing correspondences be-
tween points in different views. Generally speaking, algorithms
for computing correspondences perform better when the motion be-
tween views is minimized. In this section, we show how to reduce
image motion between views of dynamic scenes by staggering cam-
era trigger times. Section 5.2 describes a new view interpolation
algorithm based on optical flow.



(a) (b)

Figure 6: High Dynamic Range Panoramic Video. By metering cameras individually, we can increase the total dynamic range of the
panoramic video. (a) In this image, all cameras are set to the same exposure. Notice the saturated areas in sunlight and dark regions in shade.
(b) For this mosaic, each camera’s exposure was set such that the average pixel value is in the middle of the sensor range, and the resulting
high dynamic range image was tone mapped for display (and printing). More details are revealed, including the radar dish and hills on the
horizon and dark areas in the foreground trees. The roof of the covered walkway, however, was outside the range of the cameras that viewed
it. The gray color is due to tone mapping–we do not actually know how bright the roof should be. The sky in the top left of the panorama was
also overexposed.

(a) (b)

(c) (d)

Figure 7: Comparison with a Canon 20D. (a) Setting the exposure times so each pixel is viewed by four cameras with varying exposure
durations (0.20ms, 0.62ms, 1.4ms, and 3.07ms). This scheme increases the local dynamic range of the mosaic relative to figure 6(a) or 6(b).
The inset (b) shows that we now have valid data for the covered walkway. The color variations along the borders of the panorama in (a) result
from viewing those portions of the scene with fewer than four different exposures. This leads to artifacts in areas where we have no valid
data. (c) An image of the same scene taken with a Canon 20D, which has a resolution of 3504 x 2336 pixels. (d) is the inset of the covered
walkway from the Canon, for comparison. Our panorama has as much (or more) dynamic range as the Canon image. However, the Canon
images are sharper and have more contrast that the panorama. The latter is due to stray light and aberrations in our relatively low-quality
lenses.



5.1 Planar Camera Arrays

To reason quantitatively about view sampling in space and time, we
will consider a planar camera array whose images are all aligned
to a common fronto-parallel reference plane. This arrangement is
used for light field rendering as well as many of the applications in
this paper. More complicated surfaces can be tessellated to form
triangles of cameras for which this analysis also applies. Given
this framework, we ask two questions. First, what is the maximum
possible image motion between two views from different positions
and times? Second, how should we trigger fixed frame rate cameras
to minimize image motion?

Figure 8 shows how motion in the images on the reference plane
is related to the scene geometry and velocities. We assume the
scene has near and far depth limits with signed distances ∆znear and
∆z f ar from the reference plane, and the reference plane is optimally
placed at a depth Z0 as described by Chai et al. [2000]. For a camera
spacing of ∆x, the parallax ∆p in the aligned images for a point P at
a distance ∆zp from the reference plane is ∆p = ∆x ·∆zp/(∆zp +Z0).
If we define the “relative depth” d of the point to be ∆zp/(∆zp +Z0),
this simplifies to ∆p = ∆x·d.

The worst-case parallax occurs at the near and far depth planes.
The worst case temporal motion will occur if P is moving at the
maximum velocity in the scene, v, on the near-depth plane, such
that the vector PtPt+1 is orthogonal to the projection ray from C0
at time t + 1. If we assume a narrow field of view for our lenses,
we can approximate this with a vector parallel to the focal plane,
shown as v∆t. If P has velocity v, the maximum temporal motion
of its image in C0 is v∆tZ0/(Z0 + ∆znear). Equating this motion to
the maximum parallax for P in a neighboring camera yields

∆t =
∆x∆znear

vZ0
(1)

This is the time step for which maximum image motion between
views at the same camera equals the maximum parallax between
neighboring views. If we represent a view by two spatial (x,y) co-
ordinates and one time coordinate t, measuring time in increments
of the time step ∆t and space in units of camera spacings provides a
normalized set of axes to relate space-time views. Because motion
due to parallax and temporal motion are not orthogonal, the true
distance measure is the Euclidean spatial distance plus the tem-
poral distance. Minimizing this distance measure between views
minimizes the maximum image motion.

This metric gives us a method to optimize our distribution of sam-
ples in space and time. Figure 9 plots the (x, t) coordinates of cap-
tured views for a linear camera array with different values of ∆x and
∆t. Since the object motion is often not known a priori, we want a
sampling that works for a wide variety of motion vectors. In scenes
with little motion (figure 9(a)) the temporal pattern makes little dif-
ference, since the main image motion is from parallax. When ob-
ject motion causes large image changes (figure 9(b)), synchronized
time samples are one of the worst sampling patterns, since it creates
dense rows of samples with large blank areas. In this case, the best
timing for the cameras is one where the available time resolution
increases with increasing parallax distance from the main sample.
As shown in figure 9(b), across an array of N cameras, every one
of the frame-time/N possible starting times is used. Note that using
this offset timing pattern does not hurt if scene velocities are small,
because the changes in time make little difference in the images that
are formed.
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Figure 8: The temporal and spatial view axes are related by image
motion. For a given scene configuration, we can determine a time
step ∆t for which the maximum image motion between temporal
samples is equal to the maximum parallax between spatially neigh-
boring views. If we measure time in increments of ∆t and space
in increments of the camera spacing, then the Manhattan distance
between view coordinates corresponds to the maximum possible
image motion between views.

(a) (b)

Figure 9: Plots showing (x,t) view coordinates for different amounts
of object motion, and different sampling patterns. Both figures
show a uniform time sampling in red and an optimal distribution
of samples in blue. (a) For scenes with large camera spacings or
very slow motion, time shifting of the cameras makes little differ-
ence. (b) For scenes with small camera spacings or high velocities,
uniform sampling creates dense rows of samples and leaves most
of the area unsampled. An optimized sample pattern starts each
camera at Q ∗ i mod N, where i is the index of the camera, N is
the number of cameras, and Q is chosen to be roughly 1/3 and also
relatively prime with N.

5.2 Multibaseline Spatiotemporal Optical Flow

Better spatiotemporal sampling would improve even the simplest
view interpolation algorithms like blending, but the sampling den-
sities required for ghost-free images using blending are prohibitive.
Instead, we created a novel optical flow variant for generating new
views from a planar video camera array. Our modified spatiotem-
poral optical flow algorithm has two novel features. Optical flow
typically computes flow between two images by iteratively warping
one towards the other. Our first modification is to solve for a flow
field at the (x,y, t) location of our desired virtual view. We were in-
spired to compute flow for the pixels in the new image by Kang et
al. [2003]. They noted that for a video sequence, computing flow at
a frame halfway between two images in a video sequence handles
degenerate flow cases better and avoids the hole-filling problems of
forward-warping when creating new views. We extend the method
to compute flow at a desired view in our normalized (x,y, t) view
space. We modified the robust optical flow estimator of Black and



Anandan [1993] using code available on the author’s web site. We
iteratively warp the nearest four captured images toward the virtual
view and minimize the weighted sum of pairwise robust data and
smoothness error terms.

Motion cannot be modelled consistently for four images at different
spacetime locations using just horizontal and vertical image flow.
The second component of our algorithm is separately accounting
for parallax and temporal motion. The standard intensity constancy
equation for optical flow is:

I(i, j, t) = I(i+u∆t, j + v∆t, t +∆t) (2)

Here, (i, j, t) represent the pixel image coordinates and time, and
u and v are the horizontal and vertical motion at an image point.
Our modified intensity constancy equation represents constancy be-
tween the virtual view and a nearby captured image at some offset
(∆x,∆y,∆t) in the space of source images:

Ivirtual(i, j,x,y, t) = Isource(i+u∆t +d∆x, j+v∆t +d∆y, t +∆t) (3)

The flow components are separated into parallax motion, deter-
mined by a points’s relative depth d and the spatial distance be-
tween views, and temporal motion, the product of the time between
views and the projection (u,v) of the temporal motion onto the im-
age plane.

For each virtual view, we choose input views for the flow algo-
rithm by computing a three-dimensional Delaunay triangulation of
the camera sampling points and selecting the views from the tetra-
hedron which encloses the desired (x,y, t) view. These images are
progressively warped toward the common virtual view at each it-
eration of the algorithm. We cannot test the intensity constancy
equation for each warped image against a virtual view. Instead,
we minimize the error between the four warped images themselves
using the sum of the pairwise robust intensity constancy error es-
timators. This produces a single flow map, which can be used to
warp the four source images to the virtual view. We currently do
not reason about occlusions and simply blend the warped images
using their barycentric weights in the tetrahedron.

Results. For our experiments, we configured the cameras in a 12-
by-8 array with a three inch camera spacing. We determined exper-
imentally that nine staggers across the 30Hz frame time would be
sufficient for our scene, so we created a 3x3 grid of triggers that is
locally uniform and replicated it across the array. Because our ap-
plication compares neighboring images, locally uniform sampling
is sufficient. We calibrated our cameras to determine their rela-
tive displacements in the camera plane using the plane plus parallax
framework described by Vaish et al. [2004].

Figure 10 shows the results of improved spatiotemporal sampling
and our view interpolation algorithm. For reference, we show a
cross-dissolve between two subsequent frames from one camera to
illustrate the temporal motion between frames. Cross-dissolves,
or blending, are the simplest interpolation method for arrays of
cameras synchronized to trigger simultaneously. Staggering the
camera trigger times to sample more uniformly in space-time im-
proves even this simple interpolation method. Figure 10(b) shows
a weighted blend of four views from the same array with staggered
trigger times. The ghosting is greatly reduced. Finally, the image
on the right shows the results of our multibaseline spatiotemporal
optical flow algorithm. Because the computed flow is consistent for
the four views, when the source images are warped and blended,
the ball appears sharp.

Discussion. We used improved sampling to create a relatively sim-
ple interpolation method that uses optical flow to account for both
parallax motion and true object motion in the scene. This method

allows us to estimate any camera image that is inside the time and
spatial extent of the original camera area. If we hold the virtual
viewpoint steady and synthesize new views at each trigger time, we
produce a registered high-speed video. We are free, however, to al-
ter the virtual view position and time arbitrarily (within the span of
the array), enabling both time dilation and virtual camera motion.

While our spatiotemporal works well in practice, it does occasion-
ally suffer from the usual artifacts of optical flow, such as large
dominant motions masking the motion of smaller regions and prob-
lems when the image motion is too large. Thus as camera spacings
increase, more sophisticated methods will be required to interpolate
new views. Many methods developed to work with synchronized
cameras should benefit from using cameras with more optimal sam-
ple timing. For example, segmentation-based stereo methods have
recently been proven very useful for spatial view interpolation [Zit-
nick et al. 2004] and analysis of structure and motion in dynamic
scenes [Tao et al. 2001; Zhang and Kambhamettu 2001]. Because
these methods match small image regions across views, one would
expect them to benefit from reduced image motion between nearby
space-time views.

The high-resolution video capture application divided the total mo-
saic resolution by four to increase the dynamic range. By contrast,
staggered camera triggers increase temporal sampling resolution
with essentially no cost. Thus, we believe that staggered timing for
video cameras arrays is always beneficial. If scene velocities are
small, the temporal offsets are inconsequential. If the velocities are
large, staggered cameras can capture events that would otherwise
go unnoticed, minimizing interpolation artifacts.

6 Synthetic Aperture Photography

Spatiotemporal view interpolation simulates a narrow moving aper-
ture in space-time. If instead of interpolating views, we align the
images taken across the aperture to a plane and average them to-
gether, we approximate a camera with a very large aperture. Shift-
ing the aligned images varies the focal depth for the system [Levoy
and Hanrahan 1996; Isaksen et al. 2000; Vaish et al. 2004]. Warp-
ing them in addition to shifting them permits the focal plane to be
tilted [Vaish et al. 2005]. In these experiments, we accelerate the
computation by having the FPGA in each camera align and shift the
video before it is compressed and sent to the host PCs. This gives
us a real-time (live) synthetic aperture videography system. Specif-
ically, as the user interactively adjusts the object focal depth, the
host PCs broadcast the required image shifts to the cameras. Cur-
rently, the processing power of our host PCs limits us to 15 video
cameras per PC.

The aperture of a traditional camera is a cylinder in space and time.
The height corresponds to the exposure time and the cross section
is the shape of the lens aperture. Synthetic aperture photography in-
creases the spatial extent of the aperture by sampling it with many
cameras. We now consider two exotic aperture shapes made possi-
ble by our array. The first, matted synthetic aperture photography,
tailors an aperture to only capture rays that see through a partial oc-
cluder. The second creates a hybrid space-time aperture that images
with high depth of field and low motion blur in low-light conditions.

6.1 Non-linear Synthetic Aperture Photography

The synthetic aperture camera effect permits one to see a subject
hidden behind partial occluders by blurring the occluder across the
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Figure 10: Better spatiotemporal sampling improves view interpolation. (a) A simple cross dissolve between two subsequent frames from
one 30Hz camera. (b) Synchronizing the cameras with staggered trigger times increases our view sampling density in space and time. This
view, created using a weighted average of four input views, shows much less ghosting. (c) Better spatiotemporal view sampling reduces
image motion between views, making optical flow more robust. Here, we warp the four source images to the desired virtual view using our
multibaseline spatiotemporal optical flow algorithm. The warped images are blended using the same weights as in the center image. No
double images are present because parallax and motion for the ball are correctly recovered.

image. However, the occluder is not rendered invisible, and the syn-
thetic aperture photograph attenuates the signal of interest, i.e. the
subject. Suppose that N cameras view the scene with measurement
noise ε . To create the synthetic aperture image, we align the views
from all cameras to one plane and average them together. If only K
cameras see through the occluder to any given point on the subject,
then the signal in the synthetic aperture image is attenuated by a
factor of K/N, while the measurement noise falls by 1/

√
N. Thus,

the SNR has fallen by at least K/
√

N relative to the SNR of a single
image. Since the occluder does not completely average out, it will
add an additional noise component.

If we knew, for each camera, which pixels saw through the partial
occluder to the subject, we could average only the contributions
from the unoccluded pixels. Averaging just the K unoccluded pixels
would increases the SNR of a single image by

√
K and does not

reduce the contrast of image by attenuating the signal. In practice,
many pixels are mixture pixels, containing information from both
the foreground and the background, so the SNR improvement will
be smaller than

√
K.

To implement this, we create a binary matte image for each camera.
The matte is one for pixels which are not blocked by the occluder
and zero otherwise. Although binary mattes discard information, in
order to use fractional (i.e. alpha) values, we must also recover the
foreground color. The binary matte is a robust, conservative solu-
tion. To create the matted synthetic aperture image, we divide the
sum of the aligned, matted input images by the sum of the aligned
mattes at each pixel.

There are several ways one might imagine creating the occlusion
mattes. One that we have implemented identifies all of the pixels
that vary significantly over time in video from each camera. Barring
motion of the occluder and interreflections between the occluder
and the subject behind it, these pixels capture some time-varying
portion of the subject and hence are not occluded. We identify these
pixels by computing the variance of each pixel over each second of
input video and thresholding.

Results. Figure 11 shows the results of our matted synthetic aper-
ture method filming people through foliage. By shaping the aper-
ture to reduce contributions from occluders, matted synthetic aper-
ture produces a more accurate image of the hidden subjects. Mix-
ture pixels prevent the occluder from being eliminated entirely, and
spaces where no rays get through are left black. We compared
the mattes we produced using the image variance in time with a

“ground truth” matte we constructed by imaging white and black
backgrounds placed behind the occluder. We found little discern-
able difference in using the two mattes.

Discussion. As we have seen in this section, customizing the rays
that contribute to a synthetic aperture image can lead to significant
improvements. Computing mattes based on the temporal variance
of each input pixel works well for static occluders. We are in-
terested in extending our techniques to handle moving occluders
using other matting techniques. Some possibilities include mat-
ting based on color thresholding for homogeneous occluders, shape
from stereo or focus, and active range finding.

So far we have shown how to shape the aperture in space, but there
is no reason we could not shape the aperture in both time and space.
For example, if we could estimate the motion of partially occluded
subjects, we could shape a space-time synthetic aperture that fol-
lows the object’s path. This aperture should generate an even better
image, where information present in some views could be added to
views where it is missing. This section showed one way to cus-
tomize an aperture for a specific problem. In the next section, we
extend this idea to shaping an aperture in both time and space.

6.2 Hybrid Aperture Photography

Traditional cameras have two means of collecting more light: in-
creasing the exposure time and increasing the lens aperture diame-
ter. Both have side effects. Increasing the exposure time increases
motion blur for fast-moving objects, and increasing the aperture di-
ameter results in a smaller depth of field. Thus, to photograph a
fast-moving object embedded in a wide depth of field, stationary
or slowly moving scene, one would prefer to use a small aperture
diameter and short exposure times. If the scene is not brightly illu-
minated, this can result in dark, noisy images.

As noted earlier, our array is not limited to cylindrical space-time
aperture functions. We can partition our array into subarrays,
thereby simultaneously capturing images of a scene using multi-
ple different apertures. By combining the images captured through
these different apertures, we effectively create a “hybrid” aperture,
allowing us to properly photograph these scenes. As an example of
this idea, in figure 12, we consider the problem of photographing a
spinning fan in the middle of a deep room. To create a hybrid aper-
ture specialized for this scene, we simultaneously image the scene
through the three following apertures:
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Figure 11: Matted synthetic aperture photography. (a) A sample image from one of 90 cameras used for this experiment. (b) The synthetic
aperture image focused on the plane of the people, computed by aligning and averaging images from all 90 cameras as described in the text.
(c) Suppressing contributions from static pixels in each camera yields a more vivid view of the scene behind the occluder. The person and
stuffed toy are more clearly visible.

• A spatially narrow, temporally wide aperture, s. The entire
scene will be in focus, but will have motion blur for fast-
moving objects. The image through a single camera with a
small aperture lens and long exposure implements this aper-
ture.

• A spatially wide, temporally narrow aperture, t, focused on
the subject. The narrow temporal aperture eliminates motion
blur, but the large spatial aperture means everything not at the
subject’s depth will be out of focus. We capture this using
a synthetic aperture photograph taken by cameras configured
with short exposure times.

• A spatially and temporally wide aperture, w. This image will
have both defocus blur due to limited depth of field and mo-
tion blur for the subject. We acquire this using a synthetic
aperture photograph taken by an interleaved array of cameras
with long exposure times.

Figure 12 shows the images Is, It , and Iw captured through the aper-
tures s, t, and w. Each of these apertures collects much more light
than would be collected by a camera with a spatially and temporally
small aperture. Observe that Is has motion blur for the fast-moving
subject (the fan), It has defocus blur for everything not at the depth
of the subject, and Iw has both. Because Iw is focused at the subject,
the motion blur of the subject is in focus and therefore identical to
the motion blur in Is. Similarly, because the two synthetic aperture
photographs are focused at the same depth, the defocus blur for the
rest of the scene is equivalent in both images. Therefore, we can
compute our desired image from Is + It - Iw, after normalizing each
image for exposure, as shown in (d).

The synthetic aperture images show aliasing artifacts because we
are point sampling the spatially wide apertures. In order to capture
the two images simultaneously, we assigned half of the cameras in
our array to one synthetic aperture and the remainder to the other,
setting aside one camera for the spatially narrow aperture. We inter-
leaved the two sets of synthetic aperture cameras in a checkerboard
pattern on our planar array, but the slight displacements between
views caused slight changes in the aliasing of the synthetic aperture
images. The differences in the aliasing remain after subtracting Iw
from It and cause artifacts.

Aliasing appears only in the defocused regions of It and Iw. In the
final image, we wish the defocus blur to cancel. If we knew where
the aliases appeared in It and Iw, we could matte out the defocused
regions prior to composing the final image. We can construct such
a matte from a depth map of the scene.

To reconstruct an alias-free synthetic aperture image, we first apply
an appropriate reconstruction filter to the samples of w. This filter
removes high-frequency components of the scene along with the
aliases. We estimate the depth of features that survive this filtering
by computing the variance across the synthetic aperture samples at
each pixel. If we assume textured objects in the scene, variance
will be high for objects not at the focal depth. We obtain a matte
by thresholding this variance image. In practice, many objects do
not have high frequency textures, but low frequency textures do not
create aliases, so the technique is robust for our purposes.

Figure 12 (e) is the result of matting It and Iw before computing
Is + It − Iw. The aliasing artifacts are gone, and we have achieved
both high depth of field for the scene and low motion blur for the
fan. The last picture (f) is the image taken through an aperture of
narrow spatial and temporal extent (i.e. one camera with a short
exposure time). The motion of the fan is frozen and the statue is in
focus, but the result is much noisier than the hybrid aperture image.

It is interesting to compare our approach to that of Stewart et al.
[2003], which proposes a hybrid reconstruction filter for light field
rendering in order to reduce “ghosting” artifacts. Their filter com-
bines a wide spatial aperture to capture subject detail with a nar-
row spatial aperture to capture scene depth and view-dependent re-
flectance. Like them, we use a hybrid reconstruction filter, i.e. com-
posed of several filters of different shape. Moreover, both hybrids
include a diagonal filter in uvst–equivalent to assuming objects are
at a fixed depth. However, the two approaches differ in several
ways. Because we consider dynamic scenes, our hybrid includes
time, while theirs does not. As a result, we must consider signal-to-
noise issues, which do not arise for the static scenes they consider.
Secondly and more importantly, Stewart et al. apply both filters
to the same light field. We instead sample the light field multiple
times, with a different sampling strategy for each filter. Finally,
their hybrid filter is linear, whereas ours is nonlinear due to the pre-
viously explained compositing step.

7 Discussion and Conclusion

We set out in 1999 to create a system that would allow us to exper-
iment with the imaging capability of a large number of inexpensive
cameras. The resulting camera array, while far from perfect, has
accomplished this goal. Its key design features–small camera tiles
with flexible mounting, accurate timing control of the imagers, and
local processing and compression with each imager–have enabled
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Figure 12: Hybrid synthetic aperture photography for combining high depth of field and low motion blur. (a-c) Images captured of a scene
simultaneously through three different apertures: a single camera with a long exposure time (a), a large synthetic aperture with short exposure
time (b), and a large synthetic aperture with a long exposure time. Computing (a+b-c) yields image (d), which has aliasing artifacts because
the synthetic apertures are sampled sparsely from slightly different locations. Masking pixels not in focus in the synthetic aperture images
before computing the difference (a + b - c) removes the aliasing (e). For comparison, image (f) shows the image taken with an aperture that
is narrow in both space and time. The entire scene is in focus and the fan motion is frozen, but the image is much noisier.

a wide variety of imaging tasks. The high sampling density can be
used to approximate cameras with extraordinary features even with
the inexpensive imagers that we used. Abutting the views leads to
high-resolution video mosaics, overlapping views can be used to
raise the effective dynamic range or frame rate, and cameras can be
allocated to accomplish all three simultaneously.

Although many of the techniques we have presented can be applied
to high-quality cameras to extend their performance even further,
we are particularly interested in exploring the limits of imaging
with large arrays of cheap cameras. One open question is whether
using many cameras and clever processing we can overcome the
poorer imaging characteristics of inexpensive cameras and outper-
form a single high-quality camera. For example, the resolution of
our high-resolution video capture system increases linearly with the
number of cameras, but fabrication yields for high-resolution image
sensors decrease exponentially with increasing pixel resolution, so
the array approach seems superior. On the other hand, our system
would make a poor camera for astronomy, which demands very low
noise, because noise decreases only logarithmically with the num-
ber of cameras. These lines of reasoning indicate that high-quality
cameras might be superior in general, but arrays can perform better
in some cases.

Aside from increasing imaging performance, our system can also be
used to create images that could not have been captured using any
normal camera. Some of these applications use cameras spread fur-
ther apart, creating a wide synthetic aperture. A key issue with this
wider baseline is how to allocate the cameras along the two spatial
and one temporal dimensions. We show that for scenes with closely
spaced cameras or fast motion, triggering all of the cameras at the
same time is a poor sampling strategy. Instead, one can sample

the (x,y, t) view volume more uniformly by distributing the firing
times of the cameras across the frame time. We take advantage of
the resulting reduced image motion with an optical flow variant that
explicitly accounts for parallax motion and object motion. This al-
lows us to interpolate missing points in the spatiotemporal volume,
creating virtual camera views from new positions in space and time.
These techniques can be used to create Matrix-style “bullet time”
effects in post-processing.

Based on our experiences with non-linear and hybrid synthetic
apertures, we believe the most interesting applications of large cam-
era array are those that do not try to approximate a conventional
camera. In particular, we have shown that by shaping the synthetic
aperture to avoid rays that do not hit the desired subject, or by creat-
ing non-cylindrical shapes in space-time, camera arrays allow one
to create images that have not been possible before. We have ex-
plored only a fraction of the possible applications, and each one
raises questions that suggest new opportunities.

Looking to the future, we would like to design a next-generation
camera array. One straightforward improvement to our system
would be adding more processing to the cameras. Our FPGAs are
operating nearly at capacity doing relatively simple image process-
ing tasks. In a future design, we would also not use image sensors
with electronic rolling shutters. The rolling shutter is analogous to
a mechanical slit shutter that scans across the image, causing rows
at the bottom of the image to expose after rows at the top. This
sampling pattern is inconvenient for many applications.

For real-time applications, a future system should support more
flexible communication as well as increased processing power. Cur-
rently, all of the video from our cameras flows directly to the host



PCs. Live synthetic aperture video, which we demonstrate only
for a modest number of cameras, would be easier if each camera
could reduce the video it received, adding images from downstream
cameras to its own warped input before transmitting it to upstream
cameras. We could add this functionality to the current architecture
by using multiple IEEE1394 interfaces in each camera to support
point-to-point communication between devices, but other applica-
tions might have more complex communication needs. Thus, be-
fore designing a new architecture, we should investigate potential
real-time array applications and how they would map to arrays of
“smart” cameras.

Finally, many applications would benefit from incorporating ac-
tive technologies into this system. For example, we envision using
range sensors or projectors for active matting techniques in syn-
thetic aperture photography. Calibration in very unstructured en-
vironments might be aided by lasers that could cast geometric cali-
bration targets into our scenes. Projectors are particularly appealing
because they seem poised to descend the same slope of falling cost
that CMOS sensors are sliding down now. Many of the challenges
working with large arrays of projectors are the same as those for
cameras: bandwidth, control, and flexibility. As technologies like
projectors and range sensors become more affordable and prevalent,
we foresee creating large, hybrid camera arrays that not only pas-
sively observe, but also actively interact with their environments.
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