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Abstract

We present a survey of recent methods for creating piecewise lin-
ear mappings between triangulations in 3D and simpler domains such
as planar regions, simplicial complexes, and spheres. We also discuss
emerging tools such as global parameterization, inter-surface mapping,
and parameterization with constraints. We start by describing the wide
range of applications where parameterization tools have been used
in recent years. We then briefly review the pertinent mathematical
background and terminology, before proceeding to survey the existing
parameterization techniques. Our survey summarizes the main ideas of
each technique and discusses its main properties, comparing it to other
methods available. Thus it aims to provide guidance to researchers and
developers when assessing the suitability of different methods for var-
ious applications. This survey focuses on the practical aspects of the
methods available, such as time complexity and robustness and shows
multiple examples of parameterizations generated using different meth-
ods, allowing the reader to visually evaluate and compare the results.



1
Introduction

Given any two surfaces with similar topology, it is possible to compute
a one-to-one and onto mapping between them. If one of these surfaces
is represented by a triangular mesh, the problem of computing such
a mapping is referred to as mesh parameterization [7, 35]. The surface
that the mesh is mapped to is typically referred to as the parameter
domain. Parameterizations between surface meshes and a variety of
domains have numerous applications in computer graphics and geom-
etry processing as described below. In recent years numerous methods
for parameterizing meshes were developed, targeting diverse parame-
ter domains and focusing on different parameterization properties. This
survey reviews the various parameterization methods, summarizing the
main ideas of each technique and focusing on the practical aspects of
the methods. It also provides examples of the results generated by many
of the more popular methods. When several methods address the same
parameterization problem, the survey strives to provide an objective
comparison between them based on criteria such as parameterization
quality, efficiency, and robustness.

We start by surveying the applications which can benefit from
parameterization in Section 1.1 and then in Section 2 briefly review
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106 Introduction

the terminology commonly used in the parameterization literature. The
rest of the survey describes the different techniques available, classify-
ing them based on the parameter domain used. Section 3 describes
techniques for planar parameterization. Section 4 reviews methods for
pre-processing meshes for planar parameterization by cutting them into
one or more charts. Section 5 examines parameterization methods for
alternative domains such as a sphere or a base mesh as well as methods
for cross-parameterization between mesh surfaces. Section 6 discusses
ways to introduce constraints into a parameterization. Finally, Section 7
summarizes the paper and discusses potential open problems in mesh
parameterization.

1.1 Applications

Surface parameterization was introduced to computer graphics as a
method for mapping textures onto surfaces [7,84]. Over the last decade,
it has gradually become a ubiquitous tool, useful for many mesh pro-
cessing applications, discussed below (Figure 1.1).

Detail Mapping Detailed objects can be efficiently represented by
a coarse geometric shape (polygonal mesh or subdivision surface) with
the details corresponding to each triangle stored in a separate 2D array.
In traditional texture mapping, the detail is the local albedo of a Lam-
bertian surface. Texture maps alone can enrich the appearance of a
surface in a static picture, but since neighboring pixels will have sim-
ilar shadowing, objects may still look flat in animations with varying
lighting conditions. Bump mapping stores small deviations of the point-
wise normal from that of the smooth underlying surface and uses the
perturbed version during shading [13]. Normal mapping [118, 130] is a
similar technique that replaces the normals directly rather than storing
a perturbation. As the light direction changes, the shading variations
produced by the normal perturbations simulate the shadows caused by
small pits and dimples in the surface. Since the actual geometry of the
object is not modified, the silhouettes still look polygonal or smooth.
Displacement mapping addresses this problem by storing small local
deformations of the surface, typically in the direction of the normal.
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Texture Mapping [76] Normal Mapping [118] Detail Transfer [8]

Morphing [71] Mesh Completion [114] Editing [77]

Databases [3] Remeshing [98] Surface Fitting [80]

Fig. 1.1 Parameterization applications.

Recent techniques [75,93,96] model a thick region of space in the neigh-
borhood of the surface by using a volumetric texture, rather than a 2D
one. Such techniques are needed in order to model detail with compli-
cated topology or detail that cannot be easily approximated locally by
a height field, such as sparsely interwoven structures or animal fur. The
natural way to map details to surfaces is using planar parameterization
(Section 3).

Detail Synthesis While the goal of texture mapping is to represent
the complicated appearance of 3D objects, several methods make use
of mesh parameterization to create the local detail necessary for a rich
appearance. Such techniques can use as input flat patches with sample
detail [92, 97, 119, 127, 129, 131]; parametric or procedural models; or
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direct user input and editing [17, 57]. The type of detail can be quite
varied and the intermediate representations used to create it parallel
the final representations used to store it.

Morphing and Detail Transfer A map between the surfaces of
two objects allows the transfer of detail from one object to another
[81,99,121], or the interpolation between the shape and appearance of
several objects [2, 63, 66, 71, 109]. By varying the interpolation ratios
over time, one can produce morphing animations. In spatially varying
and frequency-varying morphs, the rate of change can be different for
different parts of the objects, or different frequency bands (coarseness
of the features being transformed) [63,66,71]. Such a map can either be
computed directly or, as more commonly done, computed by mapping
both object surfaces to a common domain (Sections 5 and 6).

In addition to transferring the static appearance of surfaces, inter-
surface parameterizations allow the transfer of animation data between
shapes, either by transferring the local surface influence from bones of
an animation rig, or by directly transferring the local affine transfor-
mation of each triangle in the mesh [122].

Mesh Completion Meshes from range scans often contain holes and
multiple components. Lévy [77] uses planar parameterization to obtain
the natural shape for hole boundaries and to triangulate those. In many
cases, prior knowledge about the overall shape of the scanned models
exists. For instance, for human scans, templates of a generic human
shape are readily available. Allen et al. [3], and Anguelov et al. [6] use
this prior knowledge to facilitate completion of scans by computing a
mapping between the scan and a template human model. Kraevoy and
Sheffer [67] develop a more generic and robust template-based approach
for completion of any type of scans. The techniques typically use an
inter-surface parameterization between the template and the scan (Sec-
tions 5 and 6).

Mesh Editing Editing operations often benefit from a local parame-
terization between pairs of models. Biermann et al. [8] use local parame-
terization to facilitate cut-and-paste transfer of details between models.
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They locally parameterize the regions of interest on the two models in
2D and overlap the two parameterizations. They use the parameteriza-
tion to transfer shape properties from one model to the other. Sorkine
et al. [121] and Lévy [77] use local parameterization for mesh composi-
tion in a similar manner. They compute an overlapping planar param-
eterization of the regions near the composition boundary on the input
models and use it to extract and smoothly blend shape information
from the two models.

Creation of Object Databases Once a large number of models
are parameterized on a common domain (Sections 5 and 6), one can
perform an analysis determining the common factors between objects
and their distinguishing traits. For example on a database of human
shapes [3], the distinguishing traits may be gender, height, and weight,
while a database of human faces may add facial expressions [10–12,
85]. Objects can be compared against the database and scored against
each of these dimensions, and the database can be used to create new
plausible object instances by interpolation or extrapolation of existing
ones.

Remeshing There are many possible triangulations that represent
the same shape with similar levels of accuracy. Some triangulation may
be more desirable than others for different applications. For example,
for numerical simulations on surfaces, triangles with a good aspect ratio
(that are not too small or too “skinny”) are important for convergence
and numerical accuracy. One common way to remesh surfaces, or to
replace one triangulation by another, is to parameterize the surface,
then map a desirable, well-understood, and easy to create triangu-
lation of the domain back to the original surface. For example, Gu
et al. [41] use a regular grid sampling of a planar square domain, while
subdivision based methods [49, 63, 72] use regular subdivision (usually
one-to-four triangle splits) on the faces of a simplicial domain. Such
locally regular meshes can usually support the creation of smooth sur-
faces as the limit process of applying subdivision rules. To generate
high quality triangulations Desbrun et al. [26] parameterize the input
mesh in the plane and then use planar Delaunay triangulation to obtain
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a high quality remeshing of the surface. One problem these methods
face is the appearance of visible discontinuities along the cuts created
to facilitate the parameterization.

Surazhsky and Gotsman [123] avoid global parameterization, and
instead use local parameterization to move vertices along the mesh
as part of an explicit remeshing scheme. Ray et al. [102] use global
periodic parameterization to generate a predominantly quadrilateral
mesh directly on the 3D surface. Dong et al. [26] use a parameterization
induced by the Morse complex to generate a quad only mesh of the
surface.

More details on the use of parameterization for remeshing can be
found in a recent survey by Alliez et al. [5].

Mesh Compression Mesh compression is used to compactly store
or transmit geometric models [4]. As with other data, compression rates
are inversely proportional to the data entropy. Thus higher compres-
sion rates can be obtained when models are represented by meshes that
are as regular as possible, both topologically and geometrically. Topo-
logical regularity refers to meshes where almost all vertices have the
same degree. Geometric regularity implies that triangles are similar to
each other in terms of shape and size, and vertices are close to the
centroid of their neighbors. Such meshes can be obtained by parame-
terizing the original objects and then remeshing with regular sampling
patterns [41, 52]. The quality of the parameterization directly impacts
the compression efficiency.

Surface Fitting One of the earlier applications of mesh parameteri-
zation is surface fitting [32,51,54,80,82]. Many applications in geometry
processing require a smooth analytical surface to be constructed from
an input mesh. A parameterization of the mesh over a base domain sig-
nificantly simplifies this task. Earlier methods either parameterized the
entire mesh in the plane [32] or segmented it and parameterized each
patch independently (Sections 3 and 4). More recent methods [51,80,82]
focus on constructing smooth global parameterizations (Section 5.1)
and use those for fitting, achieving global continuity of the constructed
surfaces.
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Modeling from Material Sheets While computer graphics focuses
on virtual models, geometry processing has numerous real-world engi-
neering applications. Particularly, planar mesh parameterization is an
important tool when modeling 3D objects from sheets of material, rang-
ing from garment modeling to metal forming or forging [7, 60, 86, 88].
All of these applications require the computation of planar patterns
to form the desired 3D shapes. Typically, models are first segmented
into nearly developable charts (Section 4), and these charts are then
parameterized in the plane (Section 3).

Medical Visualization Complex geometric structures are often bet-
ter visualized and analyzed by mapping the surface normal-map, color,
and other properties to a simpler, canonical domain. One of the struc-
tures for which such mapping is particularly useful is the human brain
[42,50,56]. Most methods for brain mapping use the fact that the brain
has genus zero, and visualize it through spherical [42,50] (Section 5.2)
or planar [56] (Section 3) parameterization.

Given the vast range of processing techniques that have benefited
from parameterization, we expect that many more applications can
utilize it as a powerful processing tool.



2
Terminology

Before proceeding to describe various parameterization techniques in
the next section, we first briefly establish some terminology. We are
concerned with the parameterization of triangle meshes. The topology
of such meshes is typically represented as a simplicial complex: a set of
1-, 2-, and 3-element subsets of a set V of labels, corresponding respec-
tively to the vertices, edges, and triangles of the mesh. The geometry of
the mesh is represented as 3D coordinates associated with each of the
vertices c:V → R3, making edges correspond to (open) line segments
in 3D, and mesh triangles to (open) triangles in 3D.

The purpose of mesh parameterization is to obtain a map between
such a mesh and a triangulation of a domain. The map is piecewise
linear, associating each triangle of the original mesh with a triangle in
the domain. An important goal of parameterization is to obtain bijec-
tive (invertible) maps, where each point on the domain corresponds to
exactly one point of the mesh. Many applications of planar parame-
terization can, with some modifications, handle global domain overlaps
(Figure 2.1(a)). For such applications the bijectivity requirement can
be weakened, requiring only local rather than global bijectivity. Local
bijectivity [118] requires a map of any sufficiently small region of the
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Fig. 2.1 Non-bijective parameterizations: (a) planar embedding with a global overlap;
(b) planar embedding with a local overlap. The normal of the highlighted flipped trian-
gle is inverted with respect to the other triangle normals.

mesh to be bijective. This condition is violated when the mappings of
adjacent mesh triangles intersect, in this case the parameterization is
said to “fold over” or contain “triangle flips” (Figure 2.1(b)).

The geometric shape of the domain triangles will typically be
slightly different than the shape of the original triangles, resulting in
angle and area distortion. Applications typically try to minimize the
distortion for the whole mesh in a least squares sense. Very few meshes
admit isometric, namely zero distortion, parameterizations. For exam-
ple, only developable surfaces (such as cylindrical or conical sheets)
admit planar isometric parameterizations. Maps that minimize the
angular distortion, or shear, are called conformal, and maps that min-
imize area distortion are called authalic. Often conformal maps are
also called harmonic, though, as shown by Floater and Hormann [35],
the two are not equivalent. These terms are borrowed from differen-
tial geometry of smooth surfaces, where Riemann’s theorem guaran-
tees that conformal maps (with zero angular distortion) always exist,
mapping any infinitesimally small circle on the surface to a circle on
the domain, and thus preserving angles, but allowing the scale factor of
the transformation to vary across the map. The Riemann theorem does
not hold for meshes. For instance, when considering planar parameter-
ization, the sum of angles around an interior mesh vertex in 3D can
vary, while the sum of angles around a vertex in the plane is always 2π.
Some conformal parameterization methods applied to a series of pro-
gressively denser meshes of the same object (with smaller and smaller
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triangles, obtained through subdivision) will converge in the limit to a
smooth conformal map. The conformality of a mesh can be measured
in multiple different ways [25,54,79,113], resulting in different function-
als to be optimized. For instance, Hormann and Greiner [54] consider
the minimal and maximal eigenvalues γ and Γ of the first fundamental
form of the mapping. Alternatively, Sheffer and de Sturler [113] directly
measure the difference between the corresponding angles in the mesh
and domain triangles.

As pointed out by Floater and Hormann [34], though authalic
parameterizations are achievable, they are not very useful by them-
selves, as they allow extreme angular and linear distortion. Thus, meth-
ods that consider area preservation [24, 25] typically balance it with
angle preservation.

Other metrics of parameterization distortion measure the preserva-
tion of distances across the mesh [107, 138, 140]. The stretch metrics
proposed by Sander et al. [107] are now commonly used in the graph-
ics community as standard measures of distance preservation. Sander
et al. [107] observe that the linear map over each triangle can be decom-
posed into a translation, a rotation, and a non-uniform scale along two
orthogonal axes. The two scale factors 0 ≤ γ ≤ Γ are the singular val-
ues of the transformation matrix, or the square roots of the eigenvalues
of the integrated metric tensor (the transpose of the matrix times the
matrix itself). Intuitively, the linear transformation map will stretch
a unit circle to an ellipse with axes γ and Γ. The L∞ stretch for a
triangle is defined by Sander et al. [107] as max(γ,Γ) = Γ, while the L2

stretch is defined as
√

(γ2 + Γ2)/2. The name for the stretch metric
comes from applications that map signals with regular sampling in the
domain to 3D surfaces; these applications want to minimize the stretch
of the signal over the surface, or the space between the locations of
mapped samples. In other words, stretch penalizes undersampling the
mesh, but not oversampling it.

When parameterizations are used to resample or compress 3D
objects, the quality of the reconstruction can be measured by the sym-
metric Hausdorff metric between the original and reconstructed meshes.
This metric measures the maximum distance between any point on
either mesh and its projection on the other mesh. In practice most
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people use an RMS-average of these point distances. For compression
schemes that allow trade-offs between the bit rate (file size) and approx-
imation accuracy, the performance is measured using rate-distortion
curves, plotting one against the other.

Keeping these definitions in mind, we now proceed to survey the
parameterization techniques available.



3
Parameterization of Topological Disks

The early papers to address parameterization for computer graph-
ics applications were interested in planar parameterization of meshes
with disk-like topology. The first application for such parameteriza-
tions was texture mapping. More recent applications include map-
ping of other surface properties such as normals or BRDFs, and
mesh processing operations such as remeshing and compression. Two
recent surveys [34, 35] list more than 20 different planar parameteri-
zation techniques. Both surveys focus on the mathematical aspects of
these techniques. To avoid unnecessary overlaps, we will address the
more practical considerations, such as the suitability of the techniques
for computer graphics applications in terms of distortion (type and
amount), robustness, and efficiency. In our discussion, we classify the
methods based on the type of parametric distortion minimized.

Planar parameterization of 3D surfaces inevitably creates distortion
in all but special cases. A well-known result from differential geometry
is that for a general surface patch there is no distance-preserving (iso-
metric) parameterization in the plane [26]. Distance-preserving param-
eterizations exist only for developable surfaces: that is, surfaces with
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zero Gaussian curvature. Cutting the surface into charts or introducing
seams (as discussed in Section 4), can reduce this distortion.

We classify planar parameterizations into roughly four groups:
methods that ignore distortion altogether (Section 3.1), methods that
minimize angular distortion (Section 3.2), methods that minimize
stretch (Section 3.3), and methods that minimize area distortion
(Section 3.4). There are also several techniques providing tools for
achieving a trade-off between different types of distortion (Section 3.5).

Ideally, most parameterization applications work best on zero dis-
tortion parameterizations, though most are tolerant to some amount of
distortion, some being more tolerant to shear and others to stretch. In
general, applications that depend on regular grids for sampling, such as
different types of detail mapping and synthesis, as well as compression
and regular resampling schemes (e.g., geometry images [41]), tend to
perform better on stretch minimizing parameterizations, since stretch
is directly related to under-sampling. In contrast, applications based on
irregular sampling, such as remeshing [25], are very sensitive to shear-
ing, but can handle quite significant stretch. When acceptable levels of
shear or stretch are not attainable because a surface is too complex, the
surface needs to be cut prior to parameterization (Section 4) in order
to achieve acceptable distortion.

In addition to distortion, several other factors should be considered
when choosing a parameterization method for an application at hand:

• Free versus fixed boundary Many methods assume the
boundary of the planar domain is pre-defined and convex.
Fixed-boundary methods typically use very simple formula-
tions and are very fast. Such methods are well suited for
some applications, for instance those that utilize a base
mesh parameterization, see Section 5.1. Free-boundary tech-
niques, which determine the boundary as part of the solu-
tion, are often slower, but typically introduce significantly
less distortion.

• Robustness Most applications of parameterization require
it to be bijective. For some applications local bijectivity
(no triangle flips) is sufficient, while others require global
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Table 3.1 Planar method summary.

Distortion
Method minimized Boundary Bijectivity Complexity

Uniform [128] None Fixed, convex Yes Linear
Harmonic [28] Angles Fixed, convex No Linear
Shape preserving [32] Angles Fixed, convex Yes Linear
Mean-value [33] Angles Fixed, convex Yes Linear
LSCM/DCP [25,79] Angles

(&Area)
Free No Linear

ABF/ABF++ [113,118] Angles Free Local (no flips) Nonlinear
MIPS [54] Angles Free Yes Nonlinear
Circle patterns [62] Angles Free Local (no flips) Nonlinear

(unique
minimum)

Stretch minimizing [107] Distances Free Yes Nonlinear
MDS [140] Distances Free No Nonlinear
Degener et al. [24] Areas Free Yes Nonlinear

bijectivity conditions (the boundary does not self-intersect).
Only a subset of the parameterization methods can guarantee
local or global bijectivity. Some of the others can guarantee
bijectivity if the input meshes satisfy specific conditions.

• Numerical Complexity The existing methods can be
roughly classified according to the optimization mechanism
they use into linear and nonlinear methods. Linear methods
are typically significantly faster and simpler to implement.
However, as expected the simplicity usually comes at the
cost of increased distortion.

Table 3.1 provides a summary of a number of popular recent meth-
ods with respect to these four criteria. Figures 3.1–3.4 and Table 3.2
provide distortion and runtime comparison between some of the more
popular recent methods.

3.1 Planar Mesh Embedding

One of the oldest methods referenced in the context of mesh parameter-
ization is the graph embedding method of Tutte [128]. Tutte’s formu-
lation of graph embedding directly applies to triangular meshes. It also
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Parameterization with uniform weights [128] on a circular domain.

Parameterization with harmonic weights [28] on a circular domain.

Parameterization with mean value weights [33] on a circular domain.

Parameterization with LSCM [79].

Fig. 3.1 Linear parameterization methods.



120 Parameterization of Topological Disks

Parameterization with MIPS [54].

Parameterization with ABF++ [118].

Parameterization with circle patterns [62].

Stretch minimizing parameterization [107].

Fig. 3.2 Nonlinear parameterization methods.

provides a general framework employed by many more-recent methods.
The graph embedding formulation uses a two stage procedure. First,
the boundary vertices of the mesh are mapped to the boundary of a
convex region in 2D. Then the positions of the rest of the vertices are



3.1. Planar Mesh Embedding 121

Parameterization with uniform weights [128] on a circular domain.

Parameterization with harmonic weights [28] on a circular domain.

Parameterization with mean value weights [33] on a circular domain.

Parameterization with LSCM [79].

Fig. 3.3 Linear parameterization methods on closed objects with a seam.

obtained by solving a linear system of the form

Lu = 0, Lv = 0

Li,j =




−∑
k �=i Li,k i = j

wij (i, j) ∈ E

0 otherwise

. (3.1)
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Parameterization with MIPS [54].

Parameterization with ABF++ [118].

Parameterization with circle patterns [62].

Stretch minimizing parameterization [107].

Fig. 3.4 Nonlinear parameterization for closed objects with a seam.

The system is solved independently for the u and v coordinates.
The parameter values of the fixed boundary vertices are used to
specify the boundary conditions for the system. The weights wij are
defined for each edge of the mesh. It was proven [32, 128], that if the
weights are positive and the matrix is symmetric, then the obtained
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parameterization is guaranteed to be bijective. Tutte [128] used uniform
unit weights, setting wij = 1 iff (i, j) is an edge in the mesh. Note that
this setting defines L as the classical graph Laplacian matrix [19]. While
the resulting parameterization is provably bijective, it does not preserve
any shape properties of the mesh (Figures 3.1 and 3.3, top row).

Another well known, but less frequently used, mesh embedding tech-
nique is based on the circle packing theorem [104]. Given a triangular
mesh, a circle packing is a collection of circles, one for each mesh ver-
tex, such that two circles are tangential if there is a mesh edge between
their associated vertices. By connecting the centers of these circles we
obtain a planar embedding. The circle packing theorem states that for
any given triangular mesh with disk topology and for any selection of
radii r associated with the boundary vertices of the mesh, there exists a
unique (up to symmetries) circle packing of the mesh with boundary cir-
cles having these radii. Collins and Stephenson [23] provide a construc-
tive technique to use the theorem to obtain mesh embeddings based
only on combinatorial mesh information. Thus the method is guar-
anteed to generate bijective embeddings but does not preserve shape
properties.

3.2 Angle-Preserving Parameterization

Many of the disk-parameterization methods are focused on minimizing
the angular distortion, or shear, of the parameterization. Several appli-
cations require angle-preserving parameterization; for instance, remesh-
ing replaces one triangulation with another of better quality, typically
by mapping a regular triangulation of the domain onto the mesh. The
quality is often defined in terms of angles: numerical simulations are
adversely affected by small angles, while good compression depends on
regular structures with triangles similar to their neighbors.

Angle-preserving parameterizations are efficient to obtain and are
also often suitable for other applications, such as texture mapping, as
long as the stretch of the parameterization is relatively low. This is
often the case when the parameterized surfaces are not too far from
developable. Riemann’s theorem [26] states that for smooth surfaces a
conformal planar parameterization exists for any planar domain. Thus,
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since meshes are often viewed as approximations of smooth surfaces,
we can argue that it is possible to map them to the plane with very
little angular distortion.

Several parameterization techniques [28,32,33] use an approach sim-
ilar to Tutte’s [128]. They first map the boundary of the surface to
the boundary of a convex domain in 2D and then obtain the param-
eterization for the rest of the vertices solving a system of equations
(Equation (3.1)), independently for the u and v coordinates. The main
difference between these methods is in the values wij assigned as edge
weights. The choice of weights influences both the distortion and the
bijectivity of the parameterization.

The harmonic or cotangent weights [28, 94] are perhaps the most
widely known in the graphics community. They define the matrix ele-
ments as:

wij = (cotαij + cotβij)/2, (3.2)

where αij and βij are the opposite angles in the two triangles shared by
the edge (i, j) as shown in Figure 3.5. These weights are derived from
a finite-element description of harmonic energy and therefore aim at
reducing the angular distortion of the parameterization. The greatest
drawback of harmonic parameterization is that if the mesh contains
obtuse angles, the weights can be negative, and, as a result, the param-
eterization can be non-bijective. Hence this formulation is not suit-
able, as is, for applications where bijectivity is a major concern. In

Fig. 3.5 Angles used for harmonic and mean-value weights.
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practice many methods suggest first improving the mesh quality by
bisecting obtuse angles or flipping edges. It has been proven that if
the mesh satisfies the Delaunay criterion, even if it contains obtuse
triangles, the parameterization obtained using the cotangent weights
(Equation (3.2)) will always be bijective. Recently, Kharevych et al. [62]
suggested using an “intrinsic” Delaunay triangulation of the surface as
an input to the harmonic mapping to guarantee bijectivity. Figures 3.1
and 3.3 show a few examples of parameterizations generated using har-
monic parameterization on a circular domain.

The shape-preserving parameterization [32] is also based on discrete
harmonic mapping. It uses weights which are positive and symmetric
thus ensuring that the parameterization is always bijective. However,
the weights vary non-smoothly, i.e., they have derivative discontinu-
ities, as the vertex i moves inside its one-ring polygon. Guskov [47]
modifies the shape preserving parameterization [32] by introducing an
extra term that allows an anisotropic parameterization stretched in the
direction of a given surface direction field.

The mean-value weights also proposed by Floater [33] are much
simpler and vary smoothly

wij = (tan(γij/2) + tan(δij/2))/‖c(i) − c(j)‖ ,

where c(i) and c(j) are the 3D positions of vertices i and j, and γij

and δij are the angles in the two triangles shared by the edge (i, j)
shown in Figure 3.5. The mean-value weights are always positive. The
resulting matrix is not symmetric (wij �= wji) thus the bijectivity proof
of Tutte [128] does not directly apply to this formulation. Neverthe-
less, Floater [33] proves that mean-value parameterization is guaran-
teed to be bijective. As shown in Figures 3.1 and 3.3 (third row) the
mean-value weights lead to parameterizations with small angular dis-
tortion. However, it was demonstrated [135] that they can in some cases
introduce larger angular distortion than the more commonly used har-
monic weights [28].

All of these techniques are very efficient and simple to implement
as they only require solving a single linear system. However, since the
parameterization distortion depends on how close the actual boundary
shape matches the 2D domain shape, the fixed-boundary techniques
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perform poorly when the 3D meshes have non-convex boundaries
(Figure 3.3), or boundaries that differ significantly from the specified
boundary of the planar domain. Thus, these techniques work best when
the inputs have well-shaped nearly convex boundaries. For instance, in
a base-mesh setting (Section 5.1) the input mesh is first segmented into
nearly triangular patches. In this setting, the fixed-boundary methods
introduce very little distortion when mapping the patches to the cor-
responding triangular base mesh faces.

To reduce the distortion, the boundary of the 2D domain can be
computed as part of the solution. Lee et al. [74] free the domain bound-
ary by introducing one or more layers of triangles around the original
boundary in 3D, creating a virtual boundary (Figure 3.6(a)). The vir-
tual boundary is fixed onto a given convex polygon and the mapping for
the rest of the vertices is computed using Floater’s method [32]. Since
the original boundary vertices are free to move, the method obtains
a parameterization with less distortion than with the original convex
combination approach (Figure 3.6). A similar idea was used by Kos
and Varady [65]. Zhang et al. [137] use scaffold triangles in the virtual
boundary that only contribute a flip penalty to a stretch-like optimiza-
tion metric.

Recently, two explicit formulations of free-boundary, linear param-
eterization, LSCM and DCP, were independently proposed by

Fig. 3.6 (a) Adding a virtual boundary to the original mesh. (b) Shape Preserving [32]
parameterization of the original mesh. (c) Parameterization of the original mesh and its
virtual boundary [74]. The virtual boundary vertices are fixed, allowing the real boundary
vertices to move.
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Fig. 3.7 LSCM [79] notations.

Lévy et al. [79] and Desbrun et al. [25]. Using different formulations
of harmonic energy, both sets of authors derived equivalent formula-
tions for free-boundary parameterization that aim to minimize angular
distortion. The formulation of Lévy et al. [79] is based on the observa-
tion that given the angles α1, α2, α3 of a planar triangle (Figure 3.7)
the following holds:

(u3,v3) − (u1,v1) =
sinα2

sinα3
Rα1 [(u2,v2) − (u1,v1)], (3.3)

where ui,vi are the planar coordinates of the triangle vertices and Rα

a rotation matrix with angle α. To minimize angular distortion the
authors plug the original 3D angles into the formula and minimize
the sum of square distances between the left and right sides of Equa-
tion (3.3). They fix two vertices to avoid the degenerate solution where
all the vertices are at one point. Interestingly, the conditions speci-
fied by these two methods for interior mesh vertices are equivalent to
the discrete harmonic energy formulation (Equation (3.2)). Thus the
difference in the results can be viewed as a difference in the imposed
boundary conditions.

Figures 3.1 and 3.3 (bottom row) show some models parameter-
ized with LSCM. As demonstrated LSCM/DCP introduce significantly
less distortion than fixed boundary approaches, particularly near the
domain boundaries. The methods do not guarantee local or global bijec-
tivity, and can theoretically result in both flipped triangles and global
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overlaps. The HLSCM method [101] describes a mechanism for speed-
ing up the solution process for LSCM using a hierarchical solver.

On meshes with high curvature, nonlinear conformal methods, dis-
cussed below, introduce significantly less stretch than DCP/LSCM
(Figure 3.4). The MIPS method [54, 55] optimizes a nonlinear func-
tional that measures mesh conformality (Figures 3.2 and 3.4, top row).
To obtain a solution it starts with a harmonic fixed-boundary parame-
terization [32] as an initial guess. It then proceeds to move vertices one
at a time to reduce the distortion metric. To prevent flips, vertices are
only permitted to move inside the kernel of neighboring vertices. When
moving boundary vertices, the method also checks for boundary over-
laps and prevents those. Thus, it guarantees that the resulting param-
eterization remains globally bijective throughout the procedure. The
authors advocate the use of conformal mapping for remeshing [69] and
surface fitting [53].

Instead of defining a planar parameterization in terms of vertex
coordinates, the ABF method [113,114] defines it in terms of the angles
of the planar triangles. Sheffer and de Sturler [113] specify a set of con-
straints that angle values have to satisfy to define a planar triangular
mesh. They search for angles that are as close as possible to the original
3D mesh angles and that satisfy those constraints. They then convert
the solution angles into actual (u,v) vertex coordinates. The resulting
parameterizations are guaranteed to have no flipped triangles (local
bijectivity) but can contain global overlaps. The authors provided a
mechanism for resolving such overlaps, but it has no guarantees of con-
vergence. The original ABF method is relatively slow and suffers from
stability problems in the angle-to-uv conversion stage for large meshes.
ABF was augmented to yield ABF++ [118], a technique addressing
both problems (Figures 3.2 and 3.4, second row). ABF++ introduces
a stable angle-to-uv conversion and drastically speeds up the solution
by introducing both direct and hierarchical solution approaches.

Zayer et al. [133] proposed to extend ABF by using additional con-
straints on the angles enforcing the parameter domain to have con-
vex boundaries, thus guaranteeing global bijectivity. Zayer et al. [135]
introduce an iterative free-boundary conformal method. They start
with a fixed-boundary parameterization and then relax it. In their
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Fig. 3.8 Setting the boundary free [135].

comparisons, the method seems to be faster but introduce more distor-
tion than ABF and MIPS (Figure 3.8).

Hurdal et al. [56] and Bowers and Hurdal [15] compute angle-
preserving parameterizations using a variation of the circle-packing for-
mulation described later by Collins and Stephenson [23]. They observe
that, in the circle-packing setting, angle preservation corresponds to
preservation of specified distances between circles. They construct pat-
terns of non-intersecting circles, where each circle corresponds to a
vertex of a triangulation. To preserve angles, they optimize distances
between circles corresponding to neighboring vertices. The authors use
the conformal mapping technique for medical visualization, focusing on
visualizing the structure of the human brain.

Kharevych et al. [62] use a circle patterns approach where each
circle corresponds to a mesh face. In contrast to classical circle pack-
ing, they use intersecting circles, with prescribed intersection angles.
Given these angles, the circle radii follow as the unique minimizer of
a convex energy. The method first computes the intersection angles
using nonlinear constrained optimization and then finds the energy
minimizer. Since the solution for the intersection angles is conformal
only for a Delaunay triangulation, the authors employ a pre-processing
stage that involves “intrinsic” Delaunay triangulation. At the final
stage of the method, the computed angles are converted to actual uv-
coordinates. The method supports equality and inequality constraints
on the angles along the boundary of the planar parameter domain.
Similar to ABF, the parameterization is locally bijective, but can con-
tain global overlaps. As shown in Figures 3.2 and 3.4, the amount of



130 Parameterization of Topological Disks

Table 3.2 Timings (s) of various parameterization techniques.

Method
Cat head
(257 ∆)

Nefertiti
(8071 ∆)

Cow
(5804 ∆)

Camel
(78K ∆)

Uniform [122]* 0.02 0.23 0.14 2.91
Harmonic [28]* 0.02 0.26 0.17 3.21
Mean-value [33]* 0.02 0.25 0.16 3.19
LSCM [79]* 0.03 0.38 0.20 5.28
ABF++ [118]* 0.06 1.87 0.77 36.31
MIPS [54]‡ 1 8 5 83
Circle patterns [62]* 0.1 3.6 2.1 76.7
Stretch minimizing [107] 5.17† 12 8.5 127

†1.2 GHz Pentium M; ∗ 3.0 GHz Pentium 4; ‡ 3.2 GHz Pentium 4.

distortion introduced by the method is comparable with that of other
nonlinear conformal techniques. Kharevych et al. propose an extension
of the method to global parameterization of meshes by introducing cone
singularites, as described in Section 6.

Karni et al. [61] propose an interesting iterative method for resolv-
ing triangle flips in existing planar triangulations. The input to their
method is a planar triangulation generated by one of the methods
above. If the triangulation contains flipped triangles they employ
an iterative vertex relocation procedure to eliminate the flips. Their
method can also be used to support soft positional constraints in pla-
nar triangulations. The method reduces the number of flipped triangles
does not guarantee that the final triangulation will be flip-free.

Table 3.2 lists the runtimes for the different conformal methods. We
used the Graphite 3D modeling system [39] to time the fixed-boundary
methods, LSCM and ABF++. For the other methods the timings were
provided by the authors. As expected, linear techniques are about one
order of magnitude faster than the nonlinear ones. Nevertheless, even
the nonlinear methods are fairly fast taking less than two minutes to
process average size models.

3.3 Distance Preserving Parameterization

In contrast to conformal parameterization, which always exists for
smooth surfaces, stretch- or distance-preserving parameterization
exists only for developable surfaces. Hence existing methods aim at
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minimizing linear distortion rather than completely eliminating it.
Early parameterization techniques [7, 78, 84] introduced distance min-
imizing formulations which were numerically quite complex and thus
hard to minimize.

Sander et al. [107] introduce two metrics of parameterization stretch
(L2 and L∞), described in Section 2. These two stretch metrics are now
commonly used for comparing linear distortion between parameteriza-
tions [62,118,138]. They then proceed to minimize the L2 metric using
a solution mechanism similar to that of Hormann and Greiner [54],
starting with a shape-preserving parameterization [32] and moving one
vertex at a time (Figures 3.2 and 3.4, bottom row). To speed up the
parameterization, the authors use a hierarchical top-down parameter-
ization approach. Similar to MIPS, the stretch minimization method
starts with non-self-intersecting parameter domains, therefore, it can
effectively prevent both flips and global overlaps, thus guaranteeing
globally bijective parameterization. Since the method’s goal is to mini-
mize an L2 norm, it sometimes compensates for shrinkage in one direc-
tion by stretching in another, introducing shearing (see camel’s neck in
Figure 3.4, bottom row). Example runtimes for the method are listed in
Table 3.2. The runtimes are slower but within the same order of mag-
nitude as those of the nonlinear conformal methods. Sander et al. [106]
introduced an extension of the method to signal specialized parameter-
ization, where the user can influence the distribution of the distortion
across the surface. This method assumes that the reconstructed signal
is piecewise constant. Tewari et al. [125] assume that the reconstruction
is piecewise linear, which provides greater sensitivity to signal detail.

Zigelman et al. [140] introduce a mesh parameterization method
that aims to preserve the distances between all pairs of vertices on
the surface. They first compute those distance using geodesics, and
then use multi-dimensional scaling (MDS) to embed the mesh in the
plane. The method performs quite well for surfaces that are close to
developable. However, for complex surfaces, it often tends to fold the
surface in the plane generating a non-bijective parameterization, since
the folded solution provides better distance preservation [138].

Zhou et al. [138] also use an MDS or isomap based approach, intro-
ducing several mechanisms to speedup the computation process. If the
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parameterized planar mesh contains folds, they segment the surface,
and parameterize each chart independently (Section 4). Figure 3.9(b)
shows the charts and the parameterization produced by the method.

In some settings it is possible to avoid solving a linear system and
simply compute the parameterization one triangle at a time [86, 120].
However, for most meshes this technique must be combined with simul-
taneous generation of cuts in the mesh surface. We therefore choose to
discuss it together with other cutting techniques in Section 4.

3.4 Area-Preserving Parameterization

As pointed out by Floater and Hormann [35], from a theoretical point
of view, there are two independent qualities that can be minimized in
a mapping: angular distortion and area distortion. For continuous sur-
faces, whereas conformal mappings are nearly unique, area-preserving
mappings are not. Thus methods that search for authalic, namely
area-preserving, mesh parameterizations typically introduce additional
optimization terms or constraints on the parameterization. Desbrun
et al. [25] use a similar derivation of their conformal DCP embed-
ding to obtain a linear formulation for local area preservation. Degener
et al. [24] develop a nonlinear formulation of per-triangle area preser-
vation. Both papers then proceed to combine the area optimization
metric with a conformality metric to allow for parameterizations that
mediate between the two as explained in the next section.

3.5 Trade-Off Between Metrics

Many applications of parameterizations fail when either the shear or
the stretch are extreme. However, they can tolerate a small amount of
either type of distortion. Thus it is sometimes advisable to provide a
parameterization that provides an adequate degree of trade-off between
angle preservation and area, or length preservation.

Desbrun et al. [25] provide a linear formulation which supports a
trade-off between angular and area distortion. It is not clear if the
combined formulation can be used in a free-boundary setting. Degener
et al. [24] extended the MIPS method [54] to find parameterizations
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Fig. 3.9 Segmentation and texture atlases for (a) Isocharts [138] – 13 charts; (b) Lévy
et al. [79] – 44 charts; (c) D-charts [60] – 12 charts; (d) multi-chart geometry images [108] –
15 charts; and (e) Zhang et al. [137] – 24 charts.
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that mediate between angle and area deformation by modifying the
minimized functional. They define the minimized energy to be a sum
of per-triangle terms. Each term is a product of the MIPS harmonic
energy per-triangle and an energy functional that measures area distor-
tion. The powers of the components in the product provide the media-
tion between the two measures. The method maintains the bijectivity
guarantees of the original MIPS algorithm. Clarenz et al. [20] provide a
different set of nonlinear energy metrics allowing for trade-off between
angle, area, and distance distortion measures.

In recent years, a number of researchers suggested using a two stage
approach. First, a mesh is parameterized using one of the existing tech-
niques listed above, and then a second, post-processing stage is applied
to improve the parameterization. The improvement typically focuses on
reducing some measure of distortion, or providing a trade-off between
several distortion measures. The methods measure the distortion of
parameterization produced by the first stage of the algorithm, and then
adopt the parameters of the second stage to reduce this distortion.

Sheffer and de Sturler [115] first computed an angle-preserving
parameterization using ABF [113]; they then used an overlay grid to
compute the stretch of the resulting parameterization; finally, they
smoothed the overlay grid to mitigate the stretch.

Yoshizawa et al. [132] and Zayer et al. [134] also start with a parame-
terization that minimizes angular distortion. They first use linear, fixed-
boundary methods to compute one. They then compute the stretch
of the parameterization; scale the weights used in the linear method
by a mitigating factor and solve the linear system again. To scale
the weights, Yoshizawa et al. [132] used the stretch metric of Sander
et al. [107], while Zayer et al. [134] use a simpler construction based on
inverse edge lengths.



4
Cutting/Chart Generation

Planar parameterization is only applicable to surfaces with disk topol-
ogy. Hence, closed surfaces and surfaces with genus greater than zero
have to be cut prior to planar parameterization. As previously noted,
greater surface complexity usually increases parameterization distor-
tion, independent of the parameterization technique used. To allow
parameterizations with low distortion, the surfaces must be cut to
reduce the complexity. Since cuts introduce discontinuities into the
parameterization, a delicate balance between the conflicting goals of
small distortion and short cuts has to be achieved. It is possible to use
constrained parameterization techniques to reduce cross-cut disconti-
nuities [68,139] as discussed in Section 6. Cutting and chart generation
are most commonly used when computing parameterizations for map-
ping of textures and other signals onto the surface. They are also used
for applications such as compression [41] and remeshing.

The techniques for cutting surfaces can be roughly divided into two
categories: segmentation techniques which partition the surface into mul-
tiple charts (Section 4.1), and seam generation techniques which intro-
duce cuts into the surface but keep it as a single chart (Section 4.2).
Multiple charts createdby segmentation typically have longer boundaries

135
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than those created by seam cutting. However, they can often be more effi-
ciently packed (Section 4.1.1) into a compact planar domain.

4.1 Mesh Segmentation

Depending on the application, mesh segmentation techniques use differ-
ent criteria for creating charts [110]. Segmentation techniques, used for
parameterization, break the surface into several charts such that the
parametric distortion when parameterizing each chart is sufficiently
low, while the number of charts remains small and their boundaries
are kept as short as possible. Since planes are developable by defini-
tion, one possible approach is to segment the surface into nearly planar
charts [21,36,84,107,108].

Earlier approaches are based on incremental clustering of mesh faces
into charts. They typically start by selecting several initial seed mesh
faces, and then grow the charts around those seeds, adding one mesh
face at a time, until all the faces are classified as belonging to one chart
or the other.

Recently, Sander et al. [108] introduced a segmentation method
inspired by Lloyd quantization (Figure 3.9(d)). Their algorithm iterates
between chart growing and reseeding stages. After each chart growing
iteration, the method selects the best seeds with respect to each chart
and repeats the process. The authors demonstrate that by iterating,
they obtain better results than single pass methods such as that of
Sander et al. [107].

Planes are a special type of developable surfaces. Thus for param-
eterization purposes planar segmentation is over-restrictive and usu-
ally generates more charts than necessary. Several recent approaches
focused on developable segmentation instead [60, 79, 138]. Lévy
et al. [79] proposed to detect high mean-curvature regions on the mesh
and then generate charts starting from seeds which are farthest from
those regions (Figure 3.9(b)). This approach tends to capture many
developable regions, but can also introduce charts which are far from
developable.

Zhou et al. [138] propose a segmentation method based on spec-
tral analysis of the surface (Figure 3.9(a)). They compute a matrix of
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geodesic mesh distances and then perform face clustering by growing
charts around the n farthest points in a space defined by the dominant
eigenvectors of the matrix.

Zhang et al. [137] use a Reeb graph connecting the critical points
of the average geodesic distance to cut the mesh, reducing its genus
to zero. The surface is further segmented into features by finding field
iso-contours where the feature area increases significantly; then the
features are classified as linear ellipsoids, flat ellipsoids, or spheres,
and cut using a lengthwise, circular, or, respectively, a “baseball seam”
cut. The resulting pieces are close to being developable and can be
parameterized with little distortion (Figure 3.9(e)).

Similar to Sander et al. [108], Julius et al. [60] use Lloyd iterations
of growing and reseeding. But instead of looking for planar regions they
search for a larger subset of developable surfaces, the so called “devel-
opable surfaces of constant slope,” which are characterized by having a
constant angle between the normal to the surface and some axis vector.
They provide a metric to measure if a chart closely approximates such
a surface, and use this metric in the chart growing and reseeding stages
(Figure 3.9(c)).

4.1.1 Chart Packing

Chartification techniques raise an additional post-processing challenge.
Following the parameterization of each individual chart, those charts
need to be placed, or packed, in a common parameter domain. For
efficient storage of the parameterized meshes, the packing has to be
as compact as possible. The optimal packing problem is NP-hard [87],
thus only heuristic or approximate packing algorithms exist. The Tetris
algorithm [79] introduces charts one by one, searching for the best
fit along the active-front of the charts packed so far (Figure 3.9(b)).
Sander et al. [108] extend this algorithm, testing for more options
(Figure 3.9(d)). Zhou et al. [138] use a similar approach but consider
also non-square parameter domains (Figure 3.9(a)).

If discontinuities along chart boundaries are not a concern, one way
to obtain a parameterization with very low distortion is to view each
triangle as a single chart. In this case, the challenge of chartification
shifts to finding compact packing [16].
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When the shape of the charts is fixed, more efficient packing is pos-
sible. Tarini et al. [16] parameterize a 3D mesh over a set of square
charts as described in Section 5.1. They then store texture as a collec-
tion of small square images, and are able support triangles spanning
multiple charts and perform correct filtering across tile boundaries by
storing a secondary index structure. Mesh vertices have 3D, rather than
2D, texture coordinates, mapping them to the space in the vicinity of
a base domain formed by several cubes glued together. These 3D coor-
dinates are interpolated for each pixel drawn for the mesh, and then
a fragment program on the graphics card projects them onto a nearby
cube face (identified using a small 3D texture) and reads the associated
texture for the face.

4.2 Seam Cutting

It is possible to reduce the parameterization distortion without cutting
the surface into separate patches by introducing multiple partial cuts
or seams inside a single patch. This typically leads to shorter cuts than
those created by segmentation. Piponi and Borshukov [95] generated
such cuts manually using a network of edges.

McCartney et al. [86] and Sorkine et al. [120] perform parameteri-
zation and cutting simultaneously. They unfold the mesh vertices onto
the plane one after the other, optimizing the local mapping. Whenever
the distortion of the mapping reaches a threshold, Sorkine et al. [120]
cut the mesh to reduce it. As a result they have a hard bound on
the distortion, but can end up with long and complicated boundaries
(Figure 4.1(a)). To measure distortion, Sorkine et al. [120] use the sin-
gular values γ and Γ of the per-triangle mapping (Section 2).

Gu et al. [41] use parameterization results to facilitate the cut-
ting process. The authors first parameterize the surface using shape-
preserving parameterization [32]. They then find the point of maximal
parametric distortion on the mapping, and generate the shortest cut
from the surface boundary to that point. They repeat the process until
the distortion falls below a certain threshold (Figure 4.1(b)).

The Seamster algorithm [112, 117] considers the differential geom-
etry properties of the surface, independent of a particular parameter-
ization technique. It first finds regions of high Gaussian curvature on
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Fig. 4.1 Generating seams: (a) Sorkine et al. [120]; (b) geometry images [41]; and (c) seam-
ster [117]. The color in (c) shows visibility – green is more visible, red is less. The Seamster
cuts go across the palm which is considered more occluded than the back of the hand.

the surface and then uses a minimal spanning tree of the mesh edges
to connect those. Finally, it cuts the mesh along the tree edges. While
Sheffer [112] uses only the edge length criterion when generating the
cuts, Sheffer and Hart [117] use a visibility metric as an edge weight
when computing the minimal spanning tree. This way they are able
to trace the cuts through the less visible parts of the surface hiding
the potential cross-cut discontinuities in texture or other maps on the
surface (Figure 4.1(c)). This algorithm was also used to cut the cow
and camel in Figures 3.3 and 3.4.

While methods that segment meshes into multiple charts implic-
itly generate charts with disk topology, seam cutting methods, such as
those of Sheffer and Hart [117] and Gu et al. [41] require an explicit
pre-processing stage to convert surfaces with high genus into topological
disks. The generation of minimal length cuts that convert a high genus
surface into a topological disk is NP-hard [30]. Lazarus et al. [70] intro-
duce a method for extraction of canonical schema, converting a high
genus surface into a topological disk which in practice produces rela-
tively short cuts. Erickson and Har-Peled [30] propose a handle cutting
method which has some elegant theoretical guarantees but is complex
to implement. A more practical approach is taken by Gu et al. [41],
who trace a spanning graph of all the faces in the mesh and then prune
this graph, obtaining a genus reducing cut. Ni et al. [90] smooth scalar
functions over a mesh obtaining “fair” Morse functions that have few
critical points and whose Morse complexes generate a small number of
cuts for genus reduction.



5
Alternate Base Domains

Some applications are quite sensitive to discontinuities in the param-
eterization, or cannot tolerate them at all. In such cases, when the
object to be parameterized is not a topological disk, it is worthwhile
to use a different base domain for the parameterization. Examples of
such domains that have been investigated include simplicial complexes
(Section 5.1), spheres (Section 5.2), and periodic planar regions with
transition curves (Section 5.3).

In addition, numerous applications of parameterization require
cross-parameterization or inter-surface mapping between multiple mod-
els [66, 109]. Pair-wise mappings between models can be used for the
transfer of different properties between the models, including straight-
forward ones, such as texture, and less obvious ones such as deformation
and animation [122]. It can also be used for blending and morph-
ing [3, 66, 109], as well as mesh completion and repair [67]. The most
common approach for pair-wise mapping is to parameterize both mod-
els on a common base domain. Free-boundary planar parameterization
is clearly unsuitable for this purpose. Instead, alternate domains such
as a simplicial complex or a sphere are commonly used.

140
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5.1 Simplicial and Quadrilateral Complexes

Historically, the most popular non-planar base domain has been a sim-
plicial complex [48, 49, 63, 66, 71–73, 99, 100, 108]. A simplicial complex
can be considered as just the connectivity part of a traditional triangle
mesh: the sets of vertices, edges, and faces. Most applications typically
use simplicial complexes representing two-manifolds with a boundary
(an edge can only be adjacent to one or two faces) with a small number
of elements. One method for obtaining such complexes is to simplify an
original mesh. Once a suitable base mesh has been chosen, the original
mesh is parameterized by assigning each of its vertices to a simplex of
the base domain (vertex, edge, or face), along with barycentric coordi-
nates inside it.

Early methods took a two-step approach to compute a parameter-
ization; in the first step, elements of the fine mesh were assigned to
faces of the base simplicial complex, while the second step would com-
pute barycentric coordinates for these elements, usually using one of
the fixed-boundary parameterization methods discussed in Section 3.
These steps could be repeated, but typically not mixed. More recent
methods, such as [63], try to perform both steps at the same time.

5.1.1 Computing Base Complexes

To obtain the simplicial complex, Eck et al. [28] grow Voronoi
regions of faces from seed points and then use the dual triangulation
(Figure 5.1(a)). The seed points are initially linked using shortest paths
across mesh edges that provide the initial boundaries of the patches
corresponding to base domain faces. To straighten each of these paths,
the two adjacent patches are parameterized to a square. The path in
question is then replaced with the diagonal of the square mapped onto
the mesh surface.

Lee et al. [73] simplify the original mesh, keeping track of corre-
spondences between the original vertices and the faces of the simplified
mesh (Figure 5.1(b)). Others, like Guskov et al. [49] (Figure 5.1(c))
and Khodakovsky et al. [63] use clustering techniques to generate the
patch connectivity and derive the base-mesh from it.
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(a) Eck et al. [28] (b) Lee et al. [73] (c) Guskov et al. [49]

Fig. 5.1 Base mesh construction.

(a) Praun et al. [99] (b) Schreiner et al. [109]

(c) Kraevoy and Sheffer [66]

Fig. 5.2 Consistent base-mesh creation.

The construction becomes more challenging when multiple models
need to be parameterized on the same complex [66, 99, 109]. Praun
et al. [99] partition a mesh into triangular patches, which correspond
to the faces of a user given simplicial complex, by drawing a network
of paths between user-supplied feature vertices that correspond to the
vertices of the base-mesh (Figure 5.2(a)).
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Kraevoy et al. [68] address a similar problem in the context of con-
strained planar parameterization (Section 6). Schreiner et al. [109], and
Kraevoy and Sheffer [66] extend the methods of Praun et al. [99] and
Kraevoy et al. [68] to construct the simplicial complex automatically,
in parallel to the patch formation. The input to both methods includes
a set of correspondences between feature vertices on the two input
models. The methods use those as the vertices of the base complex.
They simultaneously trace paths on the input meshes between cor-
responding pairs of vertices, splitting existing mesh edges if necessary
(Figure 5.2(b) and 5.2(c)). Tarini et al. [124] were the first, to our knowl-
edge, to use a quadrilateral base domain (Figures 5.3(a) and 5.4(a)).
Such a domain is much more suitable for quadrilateral remeshing of
the input surface and for spline fitting. Tarini et al. [124] generate the
base domain manually.

(a) Polycube maps [124]. (b) Boier-Martin et al. [14].

(c) SSQ [27]. (d) Tong et al. [126]. (e) Carr et al. [18].

Fig. 5.3 Quadrilateral base domain construction and mapping.
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Tarini et al. [124]. Kraevoy and Sheffer [66].

Fig. 5.4 Maps to base domains.

Boier-Martin et al. [14] first construct a coarse mesh using normal-
based clustering of faces followed by spatially based clustering of the
initially generated charts. This coarse mesh is then cleaned up and
quadrangulated, yielding the base domain over which the input mesh
is parameterized (Figure 5.3(b)).

Recently, Tong et al. [126] introduced a method for semi-automatic
construction of curvature aligned quadrilateral base meshes. The
method finds the umbilical points of the curvature field and then con-
nects them along paths aligned with the principal curvature directions.
They then proceed to find a global parameterization across the base
domain as explained in Section 5.3 (Figure 5.3(d)).

Dong et al. [27] combine spectral analysis and Morse theory, com-
puting the Morse complex of one of the eigenvectors of the Laplacian
matrix (Equation (3.1)) weighted by the cotangent weights (Section
3.2). After smoothing, the Morse complex partitions the mesh into
quad patches (Figure 5.3(c)). The constructed base domains and the
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subsequent parameterization are typically not aligned with principal
curvatures, an undesirable property when the parameterization is used
for surface fitting or remeshing.

Similar to Sorkine et al. [120], Carr et al. [18] grow clusters outward
from initial seed faces. To constrain cluster growth to a rectangular
shape, a parameterization distance metric is employed which roughly
approximates geodesic distance on the surface. The rectangular charts
are then parameterized using shape-preserving parameterization [32],
with the constraint that the parameterization is continuous on chart
boundaries (Figure 5.3(e)).

5.1.2 Mapping to the Base Mesh

Once the discrete assignment to base domain faces has been done, the
barycentric coordinates can be computed using fixed-boundary planar
parameterization with the techniques from Section 3 [28, 49, 72]. Ear-
lier methods computed the barycentric coordinates once, based on the
initial assignment of the vertices to the base triangles (Figure 5.5(a)
and 5.5(b)). More recent methods [63, 66, 67, 120] use a process where
vertices can be reassigned between base faces.

Khodakovsky et al. [63] perform the vertex-to-patch assignment
and coordinate relaxation in a single procedure, by letting vertices
cross patch boundaries using transition functions (Figure 5.5(c)).

(a) MAPS [73]. (b) Guskov et al. [63]. (c) Khodakovsky et al. [63].

Fig. 5.5 Mappings to base, visualizing derivative magnitudes of the tangent field (gray:
small; red: large). The figures come from Khodakovsky et al. [63].
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A transition function expresses the barycentric coordinates of a ver-
tex with respect to a base domain face as barycentric coordinates for
a neighboring base domain face. For this procedure, only the images of
the base domain vertices needs to be fixed, rather than the edges as well
as in the previous methods. The authors relax the base domain vertices
separately, prompting a new run of the main relaxation. In practice, this
cycle is repeated only very few times. The implementation sometimes
needs to discard some relaxation results when mesh vertices moved
around base domain vertices end up with barycentric coordinates that
are invalid for all the base domain faces around that vertex.

Tarini et al. [124] and Kraevoy and Sheffer [66, 67] fix the bound-
ary of a group of base mesh faces, update the barycentric coordinates
in the interior, and then possibly re-assign some vertices to different
faces inside the group. The methods differ in the grouping they use
and the choice of parameterization technique used for the barycentric
coordinates computation (Figure 5.4).

Schreiner et al. [109] never compute an explicit map between the
full-resolution objects and the base domain. Instead, they alternate
the role of base domain between the two meshes, at various complexity
levels in a multi-resolution representation. They progressively refine
each mesh by adding new vertices and relaxing their location using
a stretch-based metric measured on a temporary planar unfolding of
their neighborhoods.

Most of the methods listed above assume that the input meshes
are closed. Schreiner et al. [109] handle meshes with boundaries by
mapping the boundaries to edges of the base complex and the corre-
sponding holes to a subset of its faces (Figure 5.6(a)). Kraevoy and
Sheffer [67] support parameterization of meshes with both holes and
multiple components (Figure 5.6(b)). They allow free-boundary param-
eterization of the holes and the outer boundaries of the components by
introducing a virtual triangulation of the holes and gaps, and updating
this triangulation during the iterative parameterization process. This
parameterization method is particularly suitable for mesh completion
operations.

The modern parameterization methods that use simplicial
or quadrilateral complexes, as described above, typically produce
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(a) Schreiner et al. [109]. (b) Kraevoy and Sheffer [67].

Fig. 5.6 (left) Schreiner et al. [109] parameterize connected models with boundaries. The
center model is 50% morph of the side ones. (right) Kraevoy and Sheffer [67] parameterize
meshes with multiple components, such as the teddy mapped here to a sphere.

parameterizations which are visually smooth everywhere except in the
vicinity of irregular vertices of the base meshes.

5.2 The Unit Sphere

The big advantage of the spherical domain over the planar one is that
it allows for seamless, continuous parameterization of genus-0 models,
and there are a large number of such models in use. Thus, the spherical
domain has received much attention in the last few years, with several
papers published about this topic [38, 50, 98, 105, 106]. Some rigorous
theory is being developed, getting close to the level of understanding
we have of planar parameterizations.

One attractive approach for spherical parameterization is to extend
the barycentric, convex boundary planar methods to the sphere. Sev-
eral methods [1, 42, 45, 64] used Gauss–Seidel iterations to obtain such
parameterization. They start by computing an initial guess and then
moving the vertices one at a time, first computing a 3D position for the
vertex using a barycentric formulation [28,32], and then projecting the
vertex to the unit sphere (Figure 5.7(a)). Isenburg et al. [58] split the
mesh in two, map the cut onto a great circle and embed each half-mesh
onto a hemisphere using a modified Tutte procedure (Figure 5.7(c)).
Regrettably, as proven by Saba et al. [105] “projected” Gauss–Seidel
iterations decrease the residual for only a finite number of iterations.
As the result approaches a bijective solution, the scheme ultimately
becomes unstable, the residual increases, and the system collapses to
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(a) Alexa [1]. (b) Haker et al. [4]. (c) Isenburg et al. [58].

(d) Saba et al. [105]. (e) Praun and Hoppe [98]. (f) Zayer et al. [136].

Fig. 5.7 Spherical parameterizations.

a degenerate solution. Saba et al. [105] note that this behavior is inde-
pendent of step size.

Birkholz [9] uses a hierarchical method which works with
the spherical angles of the embedding. The hierarchical approach
stabilizes the convergence, but is able to obtain only an approximate
solution.



5.2. The Unit Sphere 149

Haker et al. [50] compute a planar parameterization of the mesh
first and then use the stereographic projection to obtain the spheri-
cal mapping (Figure 5.7(b)). This approach works quite well in prac-
tice even for dense meshes, however it does not offer any theoretical
guarantees since the stereographic projection is bijective only for the
continuous case, and can produce triangle flips in the discrete case. A
simple proof by example of this statement can be obtained by imag-
ining the great circle supporting the edge AB of a mapped spherical
triangle ABC, below. The (continuous) stereographic projection maps
this great circle to a circle in the original plane. The third vertex C
can be perturbed in the plane to cross from the interior to the exterior
of the circle, without changing the triangle orientation. The spherical
triangle ABC will flip however as a result of this perturbation, as the
image of C on the sphere will cross from one side to the other of the
spherical edge AB.

Gotsman et al. [38] showed how to correctly generalize the method of
barycentric coordinates, with all its advantages, to the sphere. The gen-
eralization is based on results from spectral graph theory due to Colin
de Vérdiere [22] and extensions due to Lovasz and Schrijver [83]. They
provide a quadratic system of equations which is a spherical equivalent
of the barycentric formulation. The authors do not provide an efficient
way to solve the resulting system, and thus their method is limited to
very small meshes. Saba et al. [105] introduce a method for efficiently
solving the system, by providing a good initial guess and using a robust
solver (Figure 5.7(d)). First, similar to Isenburg et al. [58], they par-
tition the mesh in two, and embed each half on a hemisphere using a
planar parameterization followed by a stereographic projection. They
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then use a numerical solution mechanism which combines Gauss–Seidel
iteration with nonlinear minimization to obtain the final solution.

Sheffer et al. [116] extend the ABF method [113] to spherical embed-
dings, formulating the problem in terms of spherical angles. Regret-
tably, it appears that the spherical formulation is numerically much
less stable than its planar equivalent. Thus the method seems imprac-
tical for large meshes.

An efficient and bijective alternative is suggested by multi-resolution
techniques. These methods obtain an initial guess by simplifying the
model until it becomes a tetrahedron (or at least, convex), trivially
embed it on the sphere, and then progressively add back the vertices
[98, 111]. Shapiro and Tal [111] compute the embedding using purely
topological operations and do not attempt to minimize any type of
distortion. Praun and Hoppe [98] obtain a spherical parameterization
by alternating refining steps that add vertices from a multi-resolution
decomposition of the object with relaxation of single vertex locations
inside their neighborhoods. The relaxation is aimed to minimize the
stretch metric of the parameterization and is guaranteed to maintain a
valid embedding (Figure 5.7(e)).

Zayer et al. [136] introduce a spherical parameterization method
which takes user prescribed poles into account (Figure 5.7(f)). They
then cut the mesh along a date line connecting these poles. With the
mesh then topologically equivalent to a disk, an initial parameteriza-
tion is defined over a rectangular domain by solving a Laplace equation
in curvilinear coordinates. The parameterization distortion is reduced
using a variant of quasi-harmonic maps [134]. Finally, they reduce
the distortion along the date line by performing tangential Laplacian
smoothing.

5.3 Discrete Differential One-Forms

The classical approach for parameterizing models of arbitrary topol-
ogy was to first construct a base-complex and then parameterize
the mesh onto the complex (Section 5.1). Recently, several meth-
ods [46,62,102,126], have proposed implicitly creating a parameteriza-
tion by solving for differential one-forms. Instead of associating (u,v)
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coordinates with vertices as in typical planar parameterization, they
associate planar vectors (du,dv) with the edges of the mesh, computing
a gradient field, or one-form. These parameterizations can be converted
to a special form of planar parameterization by fixing a vertex, then
walking around to other vertices and adding edge vectors. The method
guarantees that inside a topological disk region, the same coordinates
are obtained for each vertex regardless of the path used to walk to it
from the source vertex. Genus-1 surface can be mapped to an infinite
plane using a multi-periodic function by tiling the plane using a mod-
ular parallelogram – a fundamental domain bounded by four curves,
parallel two by two. For higher genus, applying this method directly
will cover the plane multiple times. Such parameterizations are guaran-
teed to be continuous everywhere, except at a small number of singular
points, and are therefore sometimes referred to as globally continuous
parameterizations.

The first method for global periodic parameterization was pro-
posed by Gu and Yau [46] (Figure 5.8(a)). After computing a
holomorphic one-form, corresponding to a global conformal parame-
terization, the authors propose constructing a global conformal atlas
for the surface, by separating the object handles and mapping each
of them to a modular parallelogram. Each parallelogram can have

Fig. 5.8 (a) Global conformal surface parameterization [46], (b) periodic global parameter-
ization [102].
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interior transition curves that conformally connect the parameteri-
zation to corresponding curves inside other modular parallelograms.
The images on the mesh of these transition curves separate the
handles.

The theory behind this parameterization comes from an elegant
connection to Riemann geometry [89]. In practice, computing the
parameterization involves solving linear systems with three types of
constraints: harmonicity, closedness, and duality. The harmonicity
equations are similar to the ones used by methods in Section 3: the
sum of vectors for edges incident to a vertex, weighed by the cotangent
harmonic weights, is zero. The closedness equations state that the sum
of the three vectors for the edges of each face is zero (a “gradient field”
has no divergence). The duality conditions replace the boundary con-
ditions in traditional parameterizations; they impose fixed values for
the integral of the field on the closed loops forming the homology basis
of the surface (the 2g curves that cut open the handles of the mesh,
where g is the genus of the surface). Several systems are solved, in each
system the integral across one of the curves is constrained to 1, and all
the others to 0.

The same authors present a faster, multi-resolution method [44],
applications to mesh compression [43], and brain surface mapping [42].
Gu et al. [44] find the unique locations of the singular points that satisfy
conformality. They also solve for the optimal conformal transforma-
tion that minimizes global stretch. Since the number of singular points
remains constant, the resulting parameterizations often still exhibit sig-
nificant stretch. The methods do not guarantee bijectivity but perform
well in practice.

Gortler et al. [37] provide further theoretical insight into the appli-
cations of one-forms to parameterizing meshes. They develop a discrete
counterpart of the Hopf–Poincaré index theorem. This theorem gener-
alizes the notion of singular points mentioned above and allows their
splitting and merging. It states that for a surface of genus g, the indices
of all singular points sum to 2g−2, where the index of a singular point
corresponds to its multiplicity. Their results include a simpler proof
of Tutte’s theorem and a proof that the method applied to genus-
1 objects indeed produces a locally bijective embedding (no triangle
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folds), for any set of asymmetric positive weights. The proof extends
to non-triangular meshes as well.

Motivated by geometry processing applications, Ray et al. [102]
incorporate more geometric information into the problem setting
(Figure 5.8(b)). Given the curvature tensor of the surface, their method
computes two piecewise linear periodic functions, aligned with the min-
imal and maximal curvatures. Together these two functions define a
smooth parameterization almost everywhere, except in the vicinity of
the singular points of the tensor field. The authors demonstrate how
to extract a quadrilateral chart layout from this periodic parameter-
ization. The method can construct quasi-isometric parameterizations
at the expense of introducing additional singular points in non-
developable regions where the curl of the input field is non-zero. They
also propose a curvature-adapted parameterization method that min-
imizes the curl and removes those additional singular points by adap-
tively scaling the parameterization. The authors demonstrate that the
method is well suited for quadrilateral remeshing and surface fitting.

Kharevych et al. [62] extend their method of parameterization using
circle patterns to global parameterization. They observe that in angle
space formulation the only difference between parameterizing the mesh
boundary and its interior mesh is in the constraint imposed on the
sum of vertices in the interior, and that it is possible to define a
global parameterization by specifying an unconnected subset of mesh
vertices as boundary vertices. Thus they first compute a solution in
angle space with a set of cone singularity vertices specified by the user
as boundary. For planar parameterization, to perform the angle-to-uv

conversion they later compute edge paths between these vertices. The
obtained parameterization is globally continuous up to translation and
rotation, everywhere except at the cone singularities. The proposed
approach can be directly applied to other angle-space methods such as
ABF/ABF++.

Tong et al. [126] compute a global parameterization by expressing
the differential one-form system back in terms of the associated poten-
tial fields (the zero-form, or uv variables per vertex) augmented with
a set of line singularities. This singularity graph is similar to a quadri-
lateral base domain (Figure 5.4) used by the methods in Section 5.1,
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and can be either user-provided or generated semi-automatically from
the mesh curvature.

5.4 Hyperbolic Plane

Objects of genus n can be mapped to an infinite tiling of the hyper-
bolic disk with 4n-sided regular polygons. Straight lines from Euclidean
geometry correspond to arcs that intersect the main hyperbolic disc at
90◦. The fundamental domain is a regular hyperbolic polygon centered
at the origin, where each opposing pair of edges corresponds to one of
the 2n loops that cut open the handles of the object. All the vertices
of the polygon correspond to a single point on the object, where all the
loops meet, which is also the only intersection point between any two
loops. The sum of angles of the polygon is 2π (which is possible for a
hyperbolic polygon with more than three sides). To produce the tiling,
the polygon is repeatedly “flipped” over an edge, using linear fractional
transforms: (z) → (az + b/cz + d), where z is a point inside the disk,
represented as a complex number.

A parameterization based on hyperbolic geometry was proposed by
Ferguson and Rockwood [31], and Rockwood and Park [103]. Grimm
and Hughes [40] use a hyperbolic parameterization as the starting point
for creating a manifold: an atlas with several overlapping charts and
transition functions between them. Each chart corresponds to one of the

Fig. 5.9 Hyperbolic parameterization [59].
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elements of the base domain. In the case of the original un-subdivided
regular polygon: one face, one (shared) vertex, and 2n (pairs of) edges.
Each chart overlaps charts of adjacent elements, resulting in a transition
function, and does not overlap any charts of non-adjacent elements.
Jin et al. [59] provide a practical algorithm for computing hyperbolic
parameterization for meshes of arbitrary genus (Figure 5.9).



6
Constraints

Sometimes a parameterization needs to accommodate user input, in
the form of correspondences between vertices of the mesh, or curves
traced on the surface, and locations in the domain. The most impor-
tant application of constrained parameterization is texture mapping
3D models from photographs [29, 68, 76]. Zhou et al. [139] go further
and allow the user to combine several images to produce a complete
texture for a mesh. Constrained parameterization can also be used to
hide cross-seam discontinuities [68,139].

Constraints are also used to establish maps with feature corre-
spondence between different 3D objects [66, 109]. Such maps between
meshes allow morphing, transferring of textures and other attributes
between meshes, and principal component analysis of similar models
in a database. Constrained parameterization methods can be grouped
into two large categories, based on whether they treat this user input
as “suggestions” or “help,” or rather, hard constraints to be satisfied
exactly.

Soft Constraints Methods based on energy minimization can
accommodate soft constraints by adding a quadratic term to the energy
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Fig. 6.1 Soft constraints [76]. Mapping the tiger texture (a) onto the face in (b) yields (c)
and (d).

function, measuring the distance between the constraint features in the
current configuration and their desired location [76] (see Figure 6.1).
Such constraints work reasonably well in practice, and can be solved
efficiently, since they only add linear terms to the energy, but some-
times break theoretical guarantees about the original parameterization
method, such as bijectivity. Allen et al. [3] deform a template mesh
to match a series of laser scans of human bodies by softly matching
a set of about 70 marker constraints and a dense set of automati-
cally computed point correspondences between the surfaces. Sumner
and Popović [122] use similar ideas to transfer deformation (and whole
animation sequences) from one mesh to another, though they do not
extract an explicit one-to-one mapping between surfaces. Note that in
these last two papers the energy being minimized takes into account
more than just the difference between the actual and desired locations
of a constraint, and actually softly matches a whole affine transforma-
tion matrix defining the surfaces around each constraint. These meth-
ods typically work well when the constraints do not require significant
changes in the output compared to the unconstrained result. In addi-
tion, the methods no longer guarantee that the resulting parameteri-
zation will remain bijective.

Hard Constraints Applications such as hiding texture discontinu-
ities along seams in the parameterization [68, 139] require hard con-
straints to achieve perfect alignment of the texture along the seams. In
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addition, hard constraints can be enforced while preserving parameter-
ization bijectivity.

It is possible to enforce constraints by adding them into a regu-
lar parameterization formulation using Lagrange multipliers [25]. This
approach allows constraints to be defined on points inside triangles
and on arbitrary line segments (the vertices of the triangulation can be
constrained more easily by taking the corresponding variables out of
the system). However, it is easy to show that for a given mesh connec-
tivity not every set of constraints can be satisfied. Thus methods like
this that preserve the mesh connectivity will fail to generate bijective
parameterizations for many inputs.

It is known that an embedding can always be found if the mesh is
enriched by adding a number of additional Steiner vertices [91], Regret-
tably, finding the minimal number of vertices that have to be added is
NP-Hard [91].

Methods that enforce hard constraints therefore modify the pro-
vided meshes by inserting a few new Steiner vertices [29, 68] or by
complete remeshing [99].

Eckstein et al. [29] introduce a method that enforces “hard” (exact)
positional constraints by deforming an existing embedding while adding
a number of Steiner vertices (Figure 6.2). Theoretically, this method
can handle large sets of constraints but is extremely complicated.

Fig. 6.2 Eckstein et al. [29] – Mapping a (a) texture of a face to a (b) mesh of a face. Result
is in (c).
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Fig. 6.3 Mapping a photograph onto a model using Matchmaker [68]. Pink dots in (a) and
(b) represent constraints. (c) and (d) show various views of the texture mapped model.

Instead, Praun et al. [99] and Kraevoy et al. [68] compute the param-
eterization by establishing coarse patch correspondences between the
input and the parameter domain (Figure 6.3). The provided feature
points on the input model and the parameter domain are connected
using a network of curves that partition the surface into patches that
are then parameterized while trying to maintain continuity and smooth-
ness between them. The curve tracing process is guided by a set of
topological rules that ensure that the resulting patches will be consis-
tent between the object(s) being parameterized and the domain, and by
heuristics that try to guide them on the correct side of constraints and
prominent model features (such as limbs), avoiding awkward parame-
terization “swirls.” Praun et al. [99] use a user provided triangulation
of the features on the parameter domain, and enforce it on the model,
while Kraevoy et al. [68] compute the two triangulations simultane-
ously, solving a more challenging problem. Continuity and smoothness
between patches can be obtained by parameterizing or relaxing the
parameterization of several patches simultaneously.

Zhou et al. [139] allow the user to combine several images to pro-
duce texture for a mesh, by assigning some surface patches to different
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Fig. 6.4 Texturing Buddha from textures of multiple objects [139]. From left to right: input
images, generated texture atlas and mapping results.

images, as well as using in-painting techniques to create texture for
any unassigned transition patches between them (Figure 6.4). In addi-
tion to geometric smoothness of the map, Zhou et al. [139] take into
account the continuity of the texture signal being applied since it may
come from different sources for two neighboring patches.



7
Conclusions

In this paper, we reviewed recent mesh parameterization techniques, as
well as related mesh processing tools such as mesh segmentation and
seam cutting. We focused on the more practical aspects of using param-
eterization for computer graphics applications, discussing method prop-
erties such as speed, robustness, and ease of implementation.

We would like to note that judging by the amount of active research
on parameterization, no survey on the topic can, realistically, be truly
complete, and ours is no exception. We are sure to have missed at least
a few of the related techniques introduced in the last couple of years.

Finally, we observe that in recent years many links have emerged
between parameterization and other mesh processing techniques, such
as mesh editing and surface approximation which are not addressed by
this survey. We also did not address parameterization of other types
of surface representations, such as free-form surfaces and point-based
surfaces, which provide challenges of their own, and for which there is
a separate, vast body of work.

We believe that while there are numerous methods for surface
parameterization available, many challenges remain. There is room for
further research on topics such as global-parameterization techniques,
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techniques that address complex constraints, and segmentation. There
are also many open questions in terms of finding suitable numerical
tools and better understanding the theoretical aspects of parameteri-
zation techniques as well as convergence properties for the numerical
tools used.
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[122] R. Sumner and J. Popović, “Deformation transfer for triangle meshes,” in
ACM SIGGRAPH 2004, pp. 399–405, 2004.

[123] V. Surazhky and C. Gotsman, “Explicit surface remeshing,” in
ACM/Eurographics Symposium on Geometry Processing, 2003.

[124] M. Tarini, K. Hormann, P. Cignoni, and C. Montani, “Poly-cube maps,” in
ACM SIGGRAPH 2004, pp. 853–860, 2004.

[125] G. Tewari, J. Snyder, P. Sander, S. Gortler, and H. Hoppe, “Signal-specialized
parameterization for piecewise linear reconstruction,” in Eurographics Sympo-
sium on Geometry Processing, pp. 57–66, 2004.



References 171

[126] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun, “Designing quadrangu-
lations with discrete harmonic forms,” in Symposium on Geometry Processing,
2006.

[127] G. Turk, “Texture synthesis on surfaces,” in ACM SIGGRAPH 2001, pp. 347–
354, 2001.

[128] W. T. Tutte, “How to draw a graph,” London Mathematical Society 1963,
vol. 13, pp. 743–768, 1963.

[129] L.-Y. Wei and M. Levoy, “Texture synthesis over arbitrary manifold surfaces,”
in ACM SIGGRAPH 2001, 2001.

[130] Wikipedia, Normal Mapping. http://en.wikipedia.org/wiki/Normal mapping.
[131] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin, “Texture and shape

synthesis on surfaces,” in Eurographics Workshop on Rendering, 2001.
[132] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “A fast and simple stretch-

minimizing mesh parameterization,” in Shape Modeling International, 2004.
[133] R. Zayer, C. Rossl, and H.-P. Seidel, “Variations on angle based flattening,”

in Proceedings of Multiresolution in Geometric Modelling, pp. 285–296, 2003.
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