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Abstract

Using generic interpolation machinery based on solving Poisson
equations, a variety of novel tools are introduced for seamless edit-
ing of image regions. The first set of tools permits the seamless
importation of both opaque and transparent source image regions
into a destination region. The second set is based on similar math-
ematical ideas and allows the user to modify the appearance of the
image seamlessly, within a selected region. These changes can be
arranged to affect the texture, the illumination, and the color of ob-
jects lying in the region, or to make tileable a rectangular selection.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques; I.4.3 [Im-
age Processing and Computer Vision]: Enhancement—Filtering;

Keywords: Interactive image editing, image gradient, guided in-
terpolation, Poisson equation, seamless cloning, selection editing

1 Introduction

Image editing tasks concern either global changes (color/intensity
corrections, filters, deformations) or local changes confined to a se-
lection. Here we are interested in achieving local changes, ones
that are restricted to a region manually selected, in a seamless and
effortless manner. The extent of the changes ranges from slight dis-
tortions to complete replacement by novel content. Classic tools to
achieve that include image filters confined to a selection, for slight
changes, and interactive cut-and-paste with cloning tools for com-
plete replacements. With these classic tools, changes in the selected
regions result in visible seams, which can be only partly hidden,
subsequently, by feathering along the border of the selected region.

We propose here a generic machinery from which different tools
for seamless editing and cloning of a selection region can be de-
rived. The mathematical tool at the heart of the approach is the
Poisson partial differential equation with Dirichlet boundary con-
ditions which specifies the Laplacian of an unknown function over
the domain of interest, along with the unknown function values over
the boundary of the domain. The motivation is twofold.

First, it is well known to psychologists [Land and McCann 1971]
that slow gradients of intensity, which are suppressed by the Lapla-
cian operator, can be superimposed on an image with barely notice-
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able effect. Conversely, the second-order variations extracted by
the Laplacian operator are the most significant perceptually.

Secondly, a scalar function on a bounded domain is uniquely de-
fined by its values on the boundary and its Laplacian in the interior.
The Poisson equation therefore has a unique solution and this leads
to a sound algorithm.

So, given methods for crafting the Laplacian of an unknown
function over some domain, and its boundary conditions, the Pois-
son equation can be solved numerically to achieve seamless filling
of that domain. This can be replicated independently in each of
the channels of a color image. Solving the Poisson equation also
has an alternative interpretation as a minimization problem: it com-
putes the function whose gradient is the closest, in the L2-norm, to
some prescribed vector field — the guidance vector field — under
given boundary conditions. In that way, the reconstructed function
interpolates the boundary conditions inwards, while following the
spatial variations of the guidance field as closely as possible. Sec-
tion 2 details this guided interpolation.

We will examine a number of possible choices for the guidance
vector field. We show in particular that this interpolation machinery
leverages classic cloning tools, both in terms of ease of use and ca-
pabilities. The resulting cloning allows the user to remove and add
objects seamlessly. By mixing suitably the gradient of the source
image with that of the destination image, it also becomes possible
to add transparent objects convincingly. Furthermore, objects with
complex outlines including holes can be added automatically with-
out the need for painstaking cutting out. These different cloning
facilities are presented in Section 3.

As shown in Section 4, the same machinery can also be used
to modify the appearance of an image within a restricted domain,
while avoiding visible discontinuities on the domain boundary. In
particular, the color, the texture, or the illumination of an object
can easily be modified without any need for precise delineation of
object boundaries. Also, a rectangular image region can be made
seamlessly tileable.

Related work The Poisson equation has been used extensively in
computer vision. It arises naturally as a necessary condition in the
solution of certain variational problems. In the specific context of
image editing applications three previous pieces of work are related
to the use of the Poisson equation proposed here.

In [Fattal et al. 2002], the gradient field of a High Dynamic
Range (HDR) image is rescaled non-linearly, producing a vector
field that is no longer a gradient field. A new image is then ob-
tained by solving a Poisson equation with the divergence of this
vector field as right-hand-side and under Neumann boundary con-
ditions specifying that the value of the gradient of the new image
in the direction normal to the boundary is zero. In contrast, the
method we are proposing here can be applied to arbitrary patches
selected from an image, not just to the entire image. In order to do
this, Neumann boundary conditions on a rectangular outline must
be replaced by Dirichlet conditions on an arbitrary outline. A fur-
ther generalization is to extend the range of nonlinear operations
applied to gradients, to include maximum operations and suppres-
sion of small gradients, both of which have useful editing functions.

In [Elder and Goldberg 2001], a system is introduced to edit an
image via a sparse set of its edge elements (edgels). To suppress an
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object, associated edgels are removed; to add an object, associated
edgels as well as color values on both sides of each of these edgels
are incorporated. The new image is then obtained by interpolat-
ing smoothly the colors associated to the new set of edgels. This
amounts to solving a Laplace equation (a Poisson equation with a
null right hand side) with Dirichlet boundary conditions given by
colors around edgels. Editing edgels and associated colors is not
always simple. In addition, image details are lost when converting
to and from the contour domain, which might be undesirable. The
sparse edgel-based representation is indeed incomplete, as opposed
to the related representation based on wavelet extrema [Mallat and
Zhong 1992], which are complete but less adapted to manual edit-
ing.

In [Lewis 2001], spots are removed from fur images by separat-
ing out the brightness component from details in a selected region
and replacing the brightness by harmonic interpolation (solving a
Laplace equation) of the brightness at the selection boundary.

In terms of image editing functionalities, two existing techniques
achieve seamless cloning as the basic instance of our system does.
The first one is Adobe c© Photoshop c©7’s Healing Brush [Adobe c©

2002]. To the best of our knowledge, the technique used by this
tool has not been published. Therefore, we don’t know whether or
not it uses a Poisson solver.

The second technique is the multiresolution image blending pro-
posed in [Burt and Adelson 1983]. The idea is to use a multires-
olution representation, namely a Laplacian pyramid, of the images
of interest. The content of the source image region is mixed, within
each resolution band independently, with its new surrounding in
the destination image. The final composite image is then recov-
ered by adding up the different levels of the new composite Lapla-
cian pyramid thus obtained. The technique results in multiresolu-
tion mixing where finest details are averaged very locally around
the boundary of the selection, while lower frequencies are mixed
over much larger distances around these boundaries. This fast tech-
nique achieves an approximate insertion of the source Laplacian
in the destination region (on the first level of the Laplacian pyra-
mid) whereas we perform this Laplacian insertion exactly via the
solution of a Poisson equation. More importantly, multiresolution
blending incorporates data from distant source and destination pix-
els, via the upper levels of the pyramid, within the final composite
image. This long range mixing, which might be undesirable, does
not occur in our technique. In addition, our system offers extended
functionality besides opaque seamless cloning, see Sections 3 and
4.

Finally, whereas we propose a guided interpolation framework,
with the guidance being specified by the user, e.g., in the form of
a source image in the case of seamless cloning, various interpo-
lation methods have been proposed to fill in image regions auto-
matically using only the knowledge of the boundary conditions.
A first class of such approaches is composed of inpainting tech-
niques [Ballester et al. 2001; Bertalmio et al. 2000] where PDE-
based interpolation methods are devised such as to continue the
isophotes hitting the boundary of the selected region. The PDEs
to be solved are more complex than the Poisson equation, and work
only for bridging fairly narrow gaps in relatively texture-free re-
gions. Example-based interpolation methods [Barret and Cheney
2002; Bornard et al. 2002; Efros and Leung 1999] where the new
image region is synthesized using an arrangement of many small
patches are an interesting alternative to inpainting. These methods
handle large holes and textured boundaries in a more convincing
way. Moreover, they can also be used to import textures as shown
in [Efros and Freeman 2001; Hertzmann et al. 2001].
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Figure 1: Guided interpolation notations. Unknown function f
interpolates in domain Ω the destination function f ∗, under guid-
ance of vector field v, which might be or not the gradient field of a
source function g.

2 Poisson solution to guided interpolation

Guided Interpolation In this section, we detail image interpola-
tion using a guidance vector field. As it is enough to solve the inter-
polation problem for each color component separately, we consider
only scalar image functions. Figure 1 illustrates the notations: let
S, a closed subset of R

2, be the image definition domain, and let
Ω be a closed subset of S with boundary ∂Ω. Let f ∗ be a known
scalar function defined over S minus the interior of Ω and let f be
an unknown scalar function defined over the interior of Ω. Finally,
let v be a vector field defined over Ω.

The simplest interpolant f of f ∗ over Ω is the membrane inter-
polant defined as the solution of the minimization problem:

min
f

∫∫

Ω
|∇ f |2 with f |∂Ω = f ∗|∂Ω, (1)

where ∇. = [ ∂ .
∂x , ∂ .

∂y ] is the gradient operator. The minimizer must
satisfy the associated Euler-Lagrange equation

∆ f = 0 over Ω with f |∂Ω = f ∗|∂Ω, (2)

where ∆. = ∂ 2.
∂x2 + ∂ 2.

∂y2 is the Laplacian operator. Equation 2 is a
Laplace equation with Dirichlet boundary conditions. For image
editing applications, this simple method produces an unsatisfactory,
blurred interpolant, and this can be overcome in a variety of ways.
One is to use a more complex differential equation as in the “in-
painting” technique of [Bertalmio et al. 2000]. The route proposed
here is to modify the problem by introducing further constraints in
the form of a guidance field as explained below.

A guidance field is a vector field v used in an extended version
of the minimization problem (1) above:

min
f

∫∫

Ω
|∇ f −v|2 with f |∂Ω = f ∗|∂Ω, (3)

whose solution is the unique solution of the following Poisson equa-
tion with Dirichlet boundary conditions:

∆ f = divv over Ω, with f |∂Ω = f ∗|∂Ω, (4)

where divv = ∂u
∂x + ∂v

∂y is the divergence of v = (u,v). This is the
fundamental machinery of Poisson editing of color images: three
Poisson equations of the form (4) are solved independently in the
three color channels of the chosen color space. All the results re-
ported in this paper were obtained in the RGB color space, but sim-
ilar results were obtained in CIE-Lab for instance.

When the guidance field v is conservative, i.e., it is the gradient
of some function g, a helpful alternative way of understanding what
Poisson interpolation does is to define the correction function f̃ on
Ω such that f = g+ f̃ . The Poisson equation (4) then becomes the
following Laplace equation with boundary conditions:

∆ f̃ = 0 over Ω, f̃ |∂Ω = ( f ∗−g)|∂Ω. (5)
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Therefore, inside Ω, the additive correction f̃ is a membrane inter-
polant of the mismatch ( f ∗− g) between the source and the desti-
nation along the boundary ∂Ω. This particular instance of guided
interpolation is used for seamless cloning in Section 3.

Discrete Poisson solver The variational problem (3), and the
associated Poisson equation with Dirichlet boundary conditions (4),
can be discretized and solved in a number of ways.

For discrete images the problem can be discretized naturally us-
ing the underlying discrete pixel grid. Without loss of generality,
we will keep the same notations for the continuous objects and their
discrete counterparts: S, Ω now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an
image or only a subset of them. For each pixel p in S, let Np be
the set of its 4-connected neighbors which are in S, and let 〈p,q〉
denote a pixel pair such that q ∈ Np. The boundary of Ω is now
∂Ω = {p ∈ S\Ω : Np ∩Ω 6= /0}. Let fp be the value of f at p. The
task is to compute the set of intensities f |Ω =

{

fp, p ∈ Ω
}

.
For Dirichlet boundary conditions defined on a boundary of ar-

bitrary shape, it is best to discretize the variational problem (3) di-
rectly, rather than the Poisson equation (4). The finite difference
discretization of (3) yields the following discrete, quadratic opti-
mization problem:

min
f |Ω

∑
〈p,q〉∩Ω6= /0

( fp − fq − vpq)
2, with fp = f ∗p , for all p ∈ ∂Ω, (6)

where vpq is the projection of v( p+q
2 ) on the oriented edge [p,q],

i.e., vpq = v( p+q
2 ) · ~pq. Its solution satisfies the following simulta-

neous linear equations:

for all p ∈ Ω, |Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩∂Ω

f ∗q + ∑
q∈Np

vpq. (7)

When Ω contains pixels on the border of S, which happens for in-
stance when Ω extends to the edge of the pixel grid, these pixels
have a truncated neighborhood such that |Np| < 4. Note that for
pixels p interior to Ω, that is, Np ⊂ Ω, there are no boundary terms
in the right hand side of (7), which reads:

|Np| fp − ∑
q∈Np

fq = ∑
q∈Np

vpq. (8)

Equations (7) form a classical, sparse (banded), symmetric,
positive-definite system. Because of the arbitrary shape of bound-
ary ∂Ω, we must use well-known iterative solvers. Results shown in
this paper have been computed using either Gauss-Seidel iteration
with successive overrelaxation or V-cycle multigrid. Both methods
are fast enough for interactive editing of medium size color image
regions, e.g., 0.4 s. per system on a Pentium 4 for a disk-shaped re-
gion of 60,000 pixels. As demonstrated in [Bolz et al. 2003], multi-
grid implementation on a GPU will provide a solution for much
larger regions.

3 Seamless cloning

Importing gradients The basic choice for the guidance field v
is a gradient field taken directly from a source image. Denoting
by g this source image, the interpolation is performed under the
guidance of

v = ∇g, (9)

and (4) now reads

∆ f = ∆g over Ω, with f |∂Ω = f ∗|∂Ω. (10)

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

As for the numerical implementation, the continuous specifica-
tion (9) translates into

for all 〈p,q〉, vpq = gp −gq, (11)

which is to be plugged into (7).
The seamless cloning tool thus obtained ensures the compliance

of source and destination boundaries. It can be used to conceal un-
desirable image features or to insert new elements in an image, but
with much more flexibility and ease than with conventional cloning,
as illustrated in Figs. 2-4. From the perspective of user input, most
tasks will simply require very loose lasso selections, as shown for
instance in Fig. 3. However, when features of the source have to
be aligned with corresponding features in the destination, as in the
fence example in Fig. 2 (bottom row) or the face example in Fig.
4 (top row), the positioning of the source and destination regions
must be more precise. Finally, in situations where seamless cloning
involves mostly pieces of texture, as in the face touch-up example
in Fig. 2 (top row) the texture swap example in Fig. 4 (bottom row)
applying repeatedly broad brush strokes is the more effective way.

Up to global changes induced by the interpolation process, the
full content of the source image is retained . In some circumstances,
it is desirable to transfer only part of the source content. The most
common instance of this problem is the transfer of the intensity
pattern from the source, not the color. A simple solution is to turn
the source image monochrome beforehand, see Fig. 5.

Mixing gradients With the tool described in the previous sec-
tion, no trace of the destination image f ∗ is kept inside Ω. However,
there are situations where it is desirable to combine properties of f ∗
with those of g, for example to add objects with holes, or partially
transparent ones, on top of a textured or cluttered background.

An example is shown in Fig.6, in which a text layer is to be
peeled off the source image and applied to the destination image,
without the need for complex selection operations. One possible
approach is to define the guidance field v as a linear combination
of source and destination gradient fields but this has the effect of
washing out the textures, see Fig. 6.

However, the Poisson methodology allows non-conservative
guidance fields to be used, which gives scope to more compelling
effect. At each point of Ω, we retain the stronger of the variations
in f ∗ or in g, using the following guidance field:

for all x ∈ Ω, v(x) =

{

∇ f ∗(x) if |∇ f ∗(x)| > |∇g(x)|,
∇g(x) otherwise. (12)
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sources destinations cloning seamless cloning

sources/destinations
cloning seamless cloning

Figure 3: Insertion. The power of the method is fully expressed
when inserting objects with complex outlines into a new back-
ground. Because of the drastic differences between the source and
the destination, standard image cloning cannot be used in this case.

source/destination cloning seamless cloning

swapped textures

Figure 4: Feature exchange. Seamless cloning allows the user to
replace easily certain features of one object by alternative features.
In the second example of texture swapping multiple broad strokes
(not shown) were used.

The discrete counterpart of this guidance field is:

vpq =

{

f ∗p − f ∗q if | f ∗p − f ∗q | > |gp −gq|,
gp −gq otherwise, (13)

for all 〈p,q〉. The effect of this guidance field is demonstrated in

source/destination

color transfer monochrome transfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Figs. 6 and 7.

(a) color-based cutout and paste (b) seamless cloning

(c) seamless cloning and destination av-
eraged (d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.

source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure is the more salient
at each location.

This mixed seamless cloning is also useful when adding one ob-
ject from a source image very close to another object in the desti-
nation image, see Fig. 8.
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source/destination seamless cloning mixed seamless cloning

Figure 8: Inserting one object close to another. With seamless
cloning, an object in the destination image touching the selected
region Ω bleeds into it. Bleeding is inhibited by using mixed gradi-
ents as the guidance field.

4 Selection editing

In the two previous sections, the guidance field depended, partly
or wholly, on the gradient field of a source image g. Alternatively,
in-place image transformations can be defined by using a guidance
field depending entirely on the original image. Based on this idea,
this section details texture flattening, spatially selective illumination
changes, background or foreground color modifications, and seam-
less tiling. The first two effects rely on non-linear modifications
of the original gradient field ∇ f ∗ in the selected region. The latter
effects rely on in-place seamless cloning after the original image
has been modified either inside the domain, providing a new source
image, or outside, providing new boundary conditions.

Texture flattening The image gradient ∇ f ∗ is passed through a
sparse sieve that retains only the most salient features:

for all x ∈ Ω, v(x) = M(x)∇ f ∗(x), (14)

where M is a binary mask turned on at a few locations of interest.
A good choice for M is an edge detector, in which case the dis-

crete version of (14), to be plugged into (7), is:

vpq =

{

fp − fq if an edge lies between p and q,
0 otherwise, (15)

for all 〈p,q〉. As shown in Fig. 9, the content of the selection Ω
gets a flattened appearance, with small grain details washed out,
and the main structure preserved. The extent of this effect depends
obviously on the sparsity of the sieve. The more selective the edge
detector, the sparser the edge map, and the more pronounced the
effect.

Note that this instance of Poisson editing has strong connections
with the contour-domain editing system of Elder and Goldberg [El-
der and Goldberg 2001]. The difference is that we specify approx-
imately the gradient vectors at edge locations through sparse guid-
ance (14), whereas their system relies on an exact specification of
color values on both sides of each edgel.

Local illumination changes As pointed out by the authors, the
method of [Fattal et al. 2002] is not limited to HDR images and can
be applied to ordinary images in order to modify smoothly their dy-
namic range. First, the gradient field of the logarithm of the image
is transformed in order to reduce the large gradients and to increase
the small ones. The transformed vector field v is then used to recon-
struct the logarithm of the image, f , by solving the Poisson equa-
tion ∆ f = divv over the whole image domain under the Neumann
boundary conditions.

Figure 9: Texture flattening. By retaining only the gradients
at edge locations, before integrating with the Poisson solver, one
washes out the texture of the selected region, giving its contents a
flat aspect.

A natural extension is to restrict the correction to a selected re-
gion Ω, using appropriate Dirichlet conditions on ∂Ω. Using a sim-
plified version of the Fattal et al. transformation [Fattal et al. 2002],
the guidance field is defined in the log-domain by:

v = αβ |∇ f ∗|−β ∇ f ∗, (16)

with α = 0.2 times the average gradient norm of f ∗ over Ω, and
β = 0.2. As shown in Fig. 10, this tool can be used for instance
to correct an under-exposed object of interest, or to reduce specular
reflections.

Figure 10: Local illumination changes. Applying an appropriate
non-linear transformation to the gradient field inside the selection
and then integrating back with a Poisson solver, modifies locally
the apparent illumination of an image. This is useful to highlight
under-exposed foreground objects or to reduce specular reflections.

Local color changes Poisson editing is also a powerful tool for
manipulating colors. Given an original color image and a selec-
tion Ω, two differently colored versions of this image can be mixed
seamlessly: one version provides the destination function f ∗ out-
side Ω, the other one provides the source function g to be modified
within Ω according to (10).

For example, the task of turning everything in an image
monochrome except some object of interest would classically be
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Figure 11: Local color changes. Left: original image showing
selection Ω surrounding loosely an object of interest; center: back-
ground decolorization done by setting g to the original color image
and f ∗ to the luminance of g; right: recoloring the object of interest
by multiplying the RGB channels of the original image by 1.5, 0.5,
and 0.5 respectively to form the source image.

Figure 12: Seamless tiling. Setting periodic boundary values on the
border of a rectangular region before integrating with the Poisson
solver yields a tileable image.

performed by precisely selecting an object and then setting its com-
plement to monochrome. In contrast, Poisson editing frees the user
from the tedium of precise selection: given a source color image g,
(a) the destination image f ∗ is set to be the luminance channel from
g, (b) the user selects a region Ω containing the object, and this
may be somewhat bigger than the actual object, and (c) the Pois-
son equation (10) is solved in each color channel. An example is
presented in Fig. 11. Note that, although the result seems to offer
also a precise segmentation of the object for free, this is not actually
the case as there is some residual contamination of the destination
image outside the object.

Conversely Poisson image editing can be used to modify the
color of a loosely selected object. Before solving the Poisson equa-
tion (10), the original image is copied to the destination f ∗ and a
version with modified colors is copied to the source g, see Fig. 11.

Seamless tiling When the domain Ω is rectangular, its content
can be made tileable by enforcing periodic boundary conditions
with the Poisson solver. The source image g is the original im-
age, and the boundary conditions are derived from the boundary
values of g, such that opposite sides of the rectangular domain cor-
respond to identical Dirichlet conditions. In Fig. 12, we have cho-
sen f ∗north = f ∗south = 0.5(gnorth + gsouth), and similarly for the east
and west borders.

5 Conclusion

Using the generic framework of guided interpolation, we have in-
troduced a variety of tools to edit in a seamless and effortless
manner the contents of an image selection. The extent of possi-
ble changes ranges from replacement by, or mixing with, another
source image region, to alterations of some aspects of the original

image inside the selection, such as texture, illumination, or color.
An important common characteristic of all these tools is that there
is no need for precise object delineation, in contrast with the classic
tools that address similar tasks. This is a valuable feature, whether
one is interested in small touch-up operations or in complex photo-
montages.

Although not illustrated in this paper, it is clear that the cloning
facilities described in Section 3 can be combined with the editing
ones introduced in Section 4. It is for instance possible to insert
an object while flattening its texture to make it match the style of a
texture-free destination.

Finally, it is worth noting that the range of editing facilities de-
rived in this paper from the same generic framework could prob-
ably be extended further. Appearance changes could for instance
also deal with the sharpness of objects of interest, thus allowing the
user to make apparent changes of focus.

Image credits Two landscapes and swimming bear in Fig. 3,
flower in Fig.11: from Corel Professional Photos, copyright c©2003
Microsoft Research and its licensors, all rights reserved; rainbow in
Fig. 7 courtesy Professor James B. Kaler, University of Illinois.
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