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Abstract

Research over the last decade has built a solid mathematical foun-
dation for representation and analysis of 3D meshes in graphics and
geometric modeling. Much of this work however does not explicitly
incorporate models of low-level human visual attention. In this pa-
per we introduce the idea of mesh saliency as a measure of regional
importance for graphics meshes. Our notion of saliency is inspired
by low-level human visual system cues. We define mesh saliency
in a scale-dependent manner using a center-surround operator on
Gaussian-weighted mean curvatures. We observe that such a defi-
nition of mesh saliency is able to capture what most would classify
as visually interesting regions on a mesh. The human-perception-
inspired importance measure computed by our mesh saliency op-
erator results in more visually pleasing results in processing and
viewing of 3D meshes, compared to using a purely geometric mea-
sure of shape, such as curvature. We discuss how mesh saliency
can be incorporated in graphics applications such as mesh simpli-
fication and viewpoint selection and present examples that show
visually appealing results from using mesh saliency.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.m [Computer Graphics]: Percep-
tion; I.3.m [Computer Graphics]: Applications

Keywords: saliency, visual attention, perception, simplification,
viewpoint selection

1 Introduction

We have witnessed significant advances in the theory and practice
of 3D graphics meshes over the last decade. These advances in-
clude efficient and progressive representation [Hoppe 1996; Karni
and Gotsman 2000], analysis [Taubin 1995; Kobbelt et al. 1998;
Meyer et al. 2003], transmission [Al-Regib et al. 2005], and ren-
dering [Luebke et al. 2003] of very large meshes. Much of this
work has focussed on using mathematical measures of shape, such
as curvature. The rapid growth in the number and quality of graph-
ics meshes and their ubiquitous use in a large number of human-
centered visual computing applications, suggest the need for incor-
porating insights from human perception into mesh processing. Al-
though excellent work has been done in incorporating principles of
perception in managing level of detail for rendering meshes [Lue-
bke and Hallen 2001; Reddy. 2001; Watson et al. 2004], there has
been less attention paid to the use of perception-inspired metrics for
processing of meshes.

(a) (b)

Figure 1: Mesh Saliency: Image (a) shows the Stanford Armadillo
model, and image (b) shows its mesh saliency.

Our goal in this paper is to bring perception-based metrics to bear
on the problem of processing and viewing 3D meshes. Purely ge-
ometric measures of shape such as curvature have a rich history of
use in the mesh processing literature. For instance, Heckbert and
Garland [1999] show that their quadric error metric is directly re-
lated to the surface curvature. Mesh simplifications resulting from
minimizing the quadric errors result in provably optimum aspect
ratio of triangles in the L2 norm, as the triangle areas approach
zero. However, a purely curvature-based metric may not neces-
sarily be a good metric of perceptual importance. For example, a
high-curvature spike in the middle of a largely flat region will be
likely perceived to be important. However, it is also likely that a
flat region in the middle of densely repeated high-curvature bumps
will be perceived to be important as well. Repeated patterns, even
if high in curvature, are visually monotonous. It is the unusual or
unexpected that delights and interests. As an example, the textured
region with repeated bumps in the leg of the Armadillo shown in
Figure 2(a) is arguably visually less interesting than an isolated but
smooth feature such as its knee (Figure 2(c)).

In this paper, we introduce the concept of mesh saliency, a mea-
sure of regional importance, for 3D meshes, and present a method
to compute it. Our method to compute mesh saliency uses a center-
surround mechanism. We use the center-surround mechanism be-
cause it has the intuitive appeal of being able to identify regions
that are different from their surrounding context. We are also en-
couraged by the success of these mechanisms on 2D problems.

We expect a good model of saliency to operate at multiple scales,
since what is interesting at one scale need not remain so at a dif-
ferent scale. A good saliency map should capture the interesting
features at all perceptually meaningful scales. Figure 3(a) shows a
saliency map at a fine scale where small features such as the nose
and mouth have high saliency, while a saliency map at a larger scale
(Figure 3(b)) shows the eye to have a higher saliency. We use these
observations to define a multi-scale model of mesh saliency using
the center-surround mechanism in Section 3. A number of tasks in
graphics can benefit from a computational model of mesh saliency.
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(a) (b) (c)

Figure 2: Curvature alone is inadequate for assessing saliency since
it does not adequately consider the local context. Image (a) shows
a part of the right leg of the Stanford Armadillo model. Image
(b) visualizes the magnitude of mean curvatures and (c) shows our
saliency values. While (b) captures repeated textures and fails to
capture the knee, (c) successfully highlights the knee.

In this paper we explore the application of mesh saliency to mesh
simplification and view selection in Sections 4 and 5.

The main contributions of this paper are:

1. Saliency Computation: There can be a number of defini-
tions of saliency for meshes. We outline one such method
for graphics meshes based on the Gaussian-weighted center-
surround evaluation of surface curvatures. Our method has
given us very promising results on several 3D meshes.

2. Salient Simplification: We discuss how traditional mesh sim-
plification methods can be modified to accommodate saliency
in the simplification process. Our results show that saliency-
guided simplification can easily preserve visually salient re-
gions in meshes that conventional simplification methods typ-
ically do not.

3. Salient Viewpoint Selection: As databases of 3D models
evolve to very large collections, it becomes important to au-
tomatically select viewpoints that capture the most salient at-
tributes of objects. We present a saliency-guided method for
viewpoint selection that maximizes visible saliency.

We foresee the computation and use of mesh saliency as an increas-
ingly important area in 3D graphics. As we engage in image synthe-
sis and analysis for ever larger graphics datasets and as the gap be-
tween processing capabilities and memory-access times grows ever
wider, the need for prioritizing and selectively processing graphics
datasets will increase. Saliency can provide an effective tool to help
achieve this.

2 Related Work

Low-level cues influence where in an image people will look and
pay attention. Many computational models of this have been pro-
posed. Koch and Ullman’s [1985] early model suggested that
salient image locations will be distinct from their surroundings. Our
approach is explicitly based on the model of Itti et al. [1998]. They
combine information from center-surround mechanisms applied to
different feature maps, computed at different scales, to compute
a saliency map that assigns a saliency value to each image pixel.
Tsotsos et al. [1995], Milanese et al. [1994], Rosenholtz [1999],
and many others describe other interesting saliency models. Among
their many applications, 2D saliency maps have been applied to se-
lectively compress [Privitera and Stark 1999] or shrink [Chen et al.
2003; Suh et al. 2003] images. DeCarlo and Santella [2002] use
saliency determined from a person’s eye movements to simplify an
image producing a non-photorealistic, painterly rendering.

(a) (b)

Figure 3: Saliency is relative to the scale. Image (a) shows the
saliency map of the Cyberware Dinosaur head at a small scale, and
image (b) shows the map of its saliency at a larger scale. In image
(a), the small-scale saliency highlights the small features such as
nose and mouth and in image (b), the large-scale saliency identifies
a larger feature such as the eye.

More recently, saliency algorithms have been applied to views of
3D models. Yee et al. [2001] use Itti et al.’s algorithm to com-
pute a saliency map of a coarsely rendered 2D projection of a 3D
dynamic scene. They use this to help decide where to focus com-
putational resources in producing a more accurate rendering. Man-
tiuk et al. [2003] use a real-time, 2D saliency algorithm to guide
MPEG compression of an animation of a 3D scene. Frintrop et
al. [2004] use a saliency map to speed up the detection of objects in
3D data. They combine saliency maps computed from 2D images
representing scene depth and intensities. Howlett [2004] demon-
strate the potential value of saliency for the simplification of 3D
models. Their work captures saliency by using an eye-tracker to
record where a person has looked at a 2D image of a 3D model.

These prior works determine saliency for a 3D model by finding
saliency in its 2D projection. There is little work that determines
saliency directly from 3D structure. Guy and Medioni [1996] pro-
posed a method for computing a saliency map for edges in a 2D
image, (such edge-based saliency maps were previously explored
by Shashua and Ullman [1988]). In [Medioni and Guy 1997] they
extend this framework to apply to 3D data. However, their approach
is mainly designed to smoothly interpolate sparse, noisy 3D data to
find surfaces. They do not compute an analog to the saliency map
for a 3D object. Watanabe and Belyaev [2001] have proposed a
method to identify regions in meshes where principal curvatures
have locally maximal values along one of the principal directions
(typically along ridges and ravines). Hisada et al. [2002] have pro-
posed a method to detect salient ridges and ravines by computing
the 3D skeleton and finding non-manifold points on the skeletal
edges and associated surface points.

3 Mesh Saliency Computation

Itti et al. [1998]’s method is one of the most effective techniques
for computing saliency for 2D images. Our method for comput-
ing saliency for 3D meshes uses their center-surround operation.
Unlike images, where color is the most important attribute, we con-
sider geometry of meshes to be the most important contributor to
saliency. At present our method for mesh saliency uses only geom-
etry, but it should be easy to incorporate other surface appearance
attributes into it as well. There are several possible characteristics
of mesh geometry that could be used for saliency. Before we decide
on one let us compare the desiderata of saliency in a 2D image with
the saliency of a 3D object. Zero saliency in an image corresponds
to a region with uniform intensity. The motivation behind this is that
the key image property whose variations are critical is the intensity.
In an image, intensity is a function of shape and lighting. For 3D
objects however, we have the opportunity to determine the saliency
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based on shape, independent of lighting. For 3D objects, we feel
that a sphere is the canonical zero-saliency feature. This is in spite
of the fact that depending on the lighting, a sphere may not produce
a uniform intensity image. In the case of the sphere the property
that is invariant is the curvature. Therefore we are guided by the
intuition that it is changes in the curvature that lead to saliency or
non-saliency. This has led us to formulate mesh saliency in terms
of the mean curvature used with the center-surround mechanism.
Figure 4 gives an overview of our saliency computation.

The first step of our saliency computation involves computing sur-
face curvatures. There are a number of excellent approaches that
generalize differential-geometry-based definition of curvatures to
discrete meshes [Taubin 1995; Meyer et al. 2003]. One can use
any of these to compute the curvature of a mesh at a vertex v.
Let the curvature map C define a mapping from each vertex of a
mesh to its mean curvature, i.e. let C (v) denote the mean curvature
of vertex v. We use Taubin [1995]’s method for curvature com-
putation. Let the neighborhood N(v,σ) for a vertex v, be the set
of points within a distance σ . One can consider several distance
functions to define the neighborhood, such as the geodesic or the
Euclidean. We have tried both and found that the Euclidean dis-
tance gave us better results and that is what we use here. Thus,
N(v,σ) = {x|‖x− v‖ < σ , x is a mesh point}. Let G(C (v),σ) de-
note the Gaussian-weighted average of the mean curvature. We
compute this as:

G(C (v),σ) =

∑
x∈N(v,2σ)

C (x)exp[−‖x− v‖2/(2σ2)]

∑
x∈N(v,2σ)

exp[−‖x− v‖2/(2σ2)]

Note that with the above formulation, we are assuming a cut-off
for the Gaussian filter at a distance 2σ . We compute the saliency
S (v) of a vertex v as the absolute difference between the Gaussian-
weighted averages computed at fine and coarse scales. We currently
use the standard deviation for the coarse scale as twice that of the
fine scale:

Figure 4: Mesh Saliency Computation: We first compute mean cur-
vature at mesh vertices. For each vertex, saliency is computed as
the difference between mean curvatures filtered with a narrow and
a broad Gaussian. For each Gaussian, we compute the Gaussian-
weighted average of the curvatures of vertices within a radius 2σ ,
where σ is Gaussian’s standard deviation. We compute saliency at
different scales by varying σ . The final saliency is the aggregate of
the saliency at all scales with a non-linear normalization.

(a) (b) (c)

(d) (e) (f)

Figure 5: Images (a)–(e) show the saliency at scales of 2ε , 3ε , 4ε ,
5ε , and 6ε . Image (f) shows the final mesh saliency after aggregat-
ing the saliency over multiple scales. Here, ε is 0.3% of the length
of the diagonal of the bounding box of the model.

S (v) = |G(C (v),σ)−G(C (v),2σ)|

To compute mesh saliency at multiple scales, we define the saliency
of a vertex v at a scale level i as Si(v):

Si(v) = |G(C (v),σi)−G(C (v),2σi)|

where, σi is the standard deviation of the Gaussian filter at scale
i. For all the results in this paper we have used five scales σi ∈
{2ε ,3ε,4ε,5ε,6ε}, where ε is 0.3% of the length of the diagonal
of the bounding box of the model.

(a) (b)

(c) (d)

Figure 6: We show mesh saliency for the Cyberware Dinosaur
model (a) in figure (c) and for the Cyberware Isis model (b) in fig-
ure (d). Warmer colors (reds and yellows) show high saliency and
cooler colors (greens and blues) show low saliency.
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Original 99% simplification 98% simplification 98.5% simplification 99% simplification
(346K triangles) (3.5K triangles) (6.9K triangles) (5.2K triangles) (3.5K triangles)

(a) Simplification by Qslim

Saliency 99% simplification 98% simplification 98.5% simplification 99% simplification
(3.5K triangles) (6.9K triangles) (5.2K triangles) (3.5K triangles)

(b) Simplification guided by saliency

Figure 7: Simplification results for the Stanford Armadillo: (a) shows simplified models using Qslim and (b) shows different levels of
simplification using saliency. The three right columns show the zoomed-in face of the Armadillo. The eyes and the nose are preserved better
with our method while the bumps on the legs are smoothed faster.

For combining saliency maps Si at different scales, we apply a
non-linear suppression operator S similar to the one proposed by
Itti et al. [1998]. This suppression operator promotes saliency maps
with a small number of high peaks (Figure 5(e)) while suppressing
saliency maps with a large number of similar peaks (Figure 5(a)).
Thus, non-linear suppression helps us in reducing the number of
salient points. If we do not use suppression, we get far too many
regions being flagged as salient. We believe, therefore, that this sup-
pression helps to define what makes something unique, and there-
fore potentially salient. For each saliency map Si, we first normal-
ize Si. We then compute the maximum saliency value Mi and the
average m̄i of the local maxima excluding the global maximum at
that scale. Finally, we multiply Si by the factor (Mi− m̄i)

2. The
final mesh saliency S is computed by adding the saliency maps
at all scales after applying the non-linear normalization of suppres-
sion: S = ∑i S(Si)

4 Salient Simplification

There is a large and growing body of literature on simplification of
meshes using a diverse set of error metrics and simplification op-
erators [Luebke et al. 2003]. Several simplification approaches use
estimates of mesh curvature to guide the simplification process and
achieve high geometric fidelity for a given triangle budget [Turk
1992; Kim et al. 2002]. Other simplification approaches, such as
QSlim [Garland and Heckbert 1997], use error metrics that while
not directly computing curvature, are related to curvature [Heck-
bert and Garland 1999]. Curvature has also been directly used to
identify salient regions on meshes. Watanabe and Belyaev [2001]
classify extrema of the principal curvatures as salient features and
preserve them better during simplification. Their method however,
does not use a center-surround mechanism to identify regions on a
mesh that are different from their local context.

For evaluating the effectiveness of our mesh saliency method, we
have modified the quadrics-based simplification method (Qslim) of
Garland and Heckbert [1997] by weighting the quadrics with mesh
saliency. However, it should be equally easy to integrate our mesh
saliency with any other mesh simplification scheme. Garland and
Heckbert’s method simplifies a mesh by repeatedly contracting ver-
tex pairs ordered by increasing quadric errors. Let P be the set of
planes of triangles incident at a vertex v, where the plane p ∈ P
defined by the equation ax + by + cz + d = 0, a2 + b2 + c2 = 1, is
represented as (a b c d)T . Then the quadric for the plane p is de-

(a) (b) (c)

Figure 8: We show the saliency-based weights and the quality of
the 99% simplification (3.5K triangles) for the Stanford Armadillo
model for three choices of the simplification weights: (a) the
original mesh saliency (W = S ) (b) the amplified mesh saliency
(W = AS ), and (c) the smoothed and amplified mesh saliency
(W = A(G(S ,3ε))).
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Original (606K tris) 4K triangles 4K triangles 2K triangles 1K triangles
(Smooth Shading)

(a) Simplification by Qslim

Saliency 4K triangles 4K triangles 2K triangles 1K triangles
(Smooth Shading)

(b) Simplification guided by saliency

Figure 9: Simplification results for the Cyberware Male: (a) shows simplifications by Garland and Heckbert’s method, and (b) shows
simplifications by our method using saliency. The eyes, nose, ears, and mouth are preserved better with our method.

fined as Qp = ppT . They define the error of v with respect to p
as the squared distance of v to p which is computed by vT Qpv.
The quadric Q of v is the sum of all the quadrics of neighboring
planes: Q = ∑p∈P Qp. After computing quadrics of all vertices,
they compute the optimal contraction point v̄ for each pair (vi,v j)

which minimizes the quadric error v̄T (Qi + Q j)v̄ where Qi and Q j
are quadrics of vi and v j , respectively. The algorithm iteratively
contracts the pair with the minimum contraction cost v̄T (Qi +Q j)v̄.
After a pair is contracted, the quadric for the new point v̄ is com-
puted simply by adding the two quadrics Qi +Q j .

We guide the order of simplification contractions using a weight
map W derived from the mesh saliency map S . We have found
that using the simplification weights based on a non-linear amplifi-
cation of the saliency gives us good results. We believe that the rea-
son behind this is that by amplifying the high saliency vertices we
are ensuring that they are preserved longer than the non-salient ver-
tices with high contraction costs. Specifically, we define a saliency
amplification operator A using a threshold α and an amplifying pa-
rameter λ , such that we amplify the saliency values that are greater
than or equal to α by a factor λ . Thus, the simplification weight
map W using the saliency amplification operator A is specified as:

W (v) = A(S (v),α,λ ) =

{

λS (v) if S (v) >= α
S (v) if S (v) < α

For all the saliency-based simplification results in this paper, we
use λ = 100 and α = 30th percentile saliency. At the initialization
stage of computing the quadric Q for each vertex v, we multiply
Q by its simplification weight W (v) derived from the saliency of
v: Q← W (v)Q. Analogous to the computation of a quadric after
a vertex-pair collapse, the simplification weight W (v) for the new
vertex v is the sum of the weights for the pair of vertices being
collapsed W (vi)+W (v j).

Obviously, the quality of simplification increases when we apply
the saliency amplifying operator. However, we have observed that
even when we directly use the saliency as the weighting factor with-
out the amplifying operator, i.e. with λ = 1, the interesting features
are preserved longer than with the original quadric-based method.

We have also observed that blurring the saliency map before com-
puting the amplified saliency gives us fewer salient regions and al-
lows the simplification process to focus more on these selected re-
gions. We use σ = 3ε for blurring, i.e.W = A(G(S ,3ε)), This is
shown in Figure 8. We compute the saliency map just once and do
not modify it during simplification so that we can always stay true
to the original model’s saliency.

5 Salient Viewpoint Selection

With advances in 3D model acquisition technologies, databases of
3D models are evolving to very large collections. Accordingly, the
importance of automatically crafting best views that maximally elu-
cidate the most important features of an object has also grown for
high-quality representative first views, or sequence of views. A
number of papers have addressed the problem of automatically se-
lecting a viewpoint for looking at an object. Kamada and Kawai
[1988] describe a method for selecting views in which surfaces are
imaged non-obliquely relative to their normals, using parallel pro-
jection. Stoev and Straßer [2002] consider a different approach that
is more suitable to viewing terrains, in which most surface nor-
mals in the scene are similar, and visible scene depth should be
maximized. In the context of computer vision, Weinshall and Wer-
man [1997] show an equivalence between the most stable and most
likely view of an object, and show that this is the view in which
an object is flattest. Finding the optimal set of views of an ob-
ject for purposes of image-based rendering has also been consid-
ered, using measures such as those providing best coverage of the
scene [Fleishman et al. 1999], and those that provide the most in-
formation [Vázquez et al. 2002].

Blanz et al. [1999] have conducted user studies to determine the
factors that influence the preferred views for 3D objects. They con-
clude that selection of a preferred view is a result of complex inter-
actions between task, object geometry, and object familiarity. Their
studies support visibility (and occlusion) of salient features of an
object as one of the factors influencing the selection of a preferred
view. Gooch et al. [2001] have built a system that uses art-inspired
principles and some of the factors suggested by Blanz et al. [1999]
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Figure 10: For viewpoint selection, we find the viewpoint that max-
imizes the visible saliency sum. Here, the wireframe mesh around
the David’s head model shows the magnitude of the visible saliency
sum when the model is seen from each direction. The color of the
mesh is also mapped from the visible saliency sum. Our method
selects the view-direction with the highest magnitude.

to automatically compute initial viewpoints for 3D objects. Sys-
tems such as these can greatly benefit from a computational model
of mesh saliency.

We have developed a method for automatically selecting viewpoint
so as to visualize the most salient object features. Our method se-
lects the viewpoint that maximizes the sum of the saliency for vis-
ible regions of the object. For a given viewpoint v, let F(v) be the
set of surface points visible from v, and let S be the mesh saliency.
We compute the saliency visible from v as: U(v) = ∑x∈F(v) S (x).
Then the viewpoint with maximum visible saliency vm is defined as
vm = argmax

v
U(v). One possible solution here is to exhaustively

compute the maximum visible saliency over all viewpoints. This
is shown in Figure 10. This, however, could get computationally
intensive as the amount and complexity of 3D content rises.

Instead, we use a gradient-descent-based optimization heuristic to
help us select good viewpoints. The optimization variables are the
longitude and latitude, (θ ,φ) and the objective function is the vis-
ible saliency U(θ ,φ). We start from a random view direction and
use the iterative gradient-descent method to find the local maxima.
We compute the local gradient by probing the saliency at neighbor-
ing view points. We use a randomized algorithm to find the global
maximum by repeating this procedure with multiple randomly se-
lected starting points. We can see the results of this approach for
Stanford’s David model in Figure 11. It is interesting to see that our
approach identified a side of the face whereas a purely curvature-
based approach has identified a view looking straight down at the
back of David’s head.

6 Results and Discussion

We have developed a model for mesh saliency, discussed its compu-
tation, and shown its applicability to mesh simplification and view-
point selection. Figure 6 shows the mesh saliency for the Cyber-
ware Dinosaur and the Cyberware Isis models. Repeating patterns
are usually not classified as salient by our approach. Notice that al-
though the curvature of the Dinosaur’s ribs in Figure 6 is high, their
saliency is low. For other examples, consider the repeated bumps
on the legs of the Armadillo model in Figure 7, David’s hair in Fig-
ure 11, or patterns in Isis’s wig in Figure 6. Our approach assigns a
low saliency to such local repeating patterns.

(a) (b) (c)

(d) (e) (f)

Figure 11: Image (a) shows a viewpoint selected by maximizing
visible saliency, and image (d) shows a viewpoint selected by max-
imizing visible mean curvature. Images (b) and (e) show the mean
curvature for the two selected viewpoints, and images (c) and (f)
show the saliency. Since saliency negates the repeated hair texture
in image (e), the method based on saliency selects the more inter-
esting region of face instead of the top of the head.

The application of our saliency models to guide simplification of
meshes have also given us very effective results. Consider for in-
stance the Cyberware Male in Figure 9. Notice how our saliency-
based simplification retains more triangles around the ears, nose,
lips, and eyes than previous methods. Although in this case, salient
simplification preserves the desirable high curvature regions, it can
also selectively ignore the undesirable high curvature regions, such
as in the simplification of the Armadillo’s legs (Figure 7) or in ig-
noring David’s hair for viewpoint selection (Figure 11).

The time to compute saliency depends on the scale at which it is
computed. Larger scales require identification and processing of a
larger number of neighborhood vertices and therefore are more time
consuming. Spatial data-structures such as a grid or an octree can
greatly improve the running time for establishing the neighborhood
at a given scale. Table 1 shows the time for saliency computation
on a 3.0 GHz Pentium IV PC with 2 GB RAM using a regular grid.

Table 1: Run Times for Computing Mesh Saliency

Time for each scale (sec)
Model #verts 2ε 3ε 4ε 5ε 6ε

Dinosaur 56K 1.6 3.4 4.8 6.7 9.0
Armadillo 172K 7.6 15.4 20.5 29.8 41.1

Male 303K 20.7 35.2 50.6 71.2 95.2
Dragon 437K 34.8 72.8 93.8 131.9 178.9

David’s Head 2M 593.7 1097.2 1407.4 1968.6 2619.7

Our mesh saliency computation approach is based on a center-
surround operator, which is present in many models of human vi-
sion. We use this approach primarily because it is a straightforward
way of finding regions that are unique relative to their surround-
ings. For this reason, it is plausible that mesh saliency may capture
the regions of 3D models that humans will also find salient. Our
experiments provide preliminary indications that this may be true.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Viewpoint selection for the Octopus and the Stanford Dragon models. Images (a)–(d) show viewpoints selected by maximizing
visible saliency, and images (e)–(h) show viewpoints selected by maximizing visible mean curvature. Images (b) and (d) show the saliency,
and images (f) and (h) show the mean curvature. Compared with a curvature-based viewpoint selection method, the saliency-based method
picks a more pleasing view for models with repeated textures such as (a) the octopus but not for (c) the Dragon. Our method for saliency-
guided view selection for the Dragon selects the view from below instead of from the side since the Dragon’s feet have a very high saliency.

7 Conclusions and Future Work

We have developed a model of mesh saliency using center-surround
filters with Gaussian-weighted curvatures. We have shown how in-
corporating mesh saliency can visually enhance the results of sev-
eral graphics tasks such as mesh simplification and viewpoint se-
lection. For a number of examples we have shown in this paper,
one can see that our model of saliency is able to capture what most
of us would classify as interesting regions in meshes. Not all such
regions necessarily have high curvature. While we do not claim that
our saliency measure is superior to mesh curvature in all respects,
we believe that mesh saliency is a good start in merging percep-
tual criteria inspired by low-level human visual system cues with
mathematical measures based on discrete differential geometry for
graphics meshes.

Mesh saliency promises to be a rich area for further research. We
are currently defining mesh saliency using mean curvature. It
should be possible to improve this by using better measures of
shape, such as principal curvatures. Our current definition of mesh
saliency considers only geometry. Generalizing mesh saliency to
encompass other appearance attributes such as color, texture, and
reflectance, should be an important direction for further research.
Current methods for lighting design [Lee et al. 2004] do not in-
corporate any notion of perceptual saliency in deciding how and
where to illuminate a scene. Saliency-based lighting design is likely
to emerge as an important area for further research. Our current
method of computing saliency takes a long time. It should be pos-
sible to significantly speed it up by using a multiresolution mesh
hierarchy to accelerate filtering at coarser scales. Mesh segmenta-
tion [Katz and Tal 2003], like mesh simplification, is another mesh
processing operation that could benefit from a saliency map that as-
signs different priorities to different regions of a mesh. It will also
be an interesting exercise to use eye-tracking to determine the re-
gions on 3D objects that elicit greater visual attention and contrast
this with their computed saliency using methods such as ours.
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