Monte Carlo Integration for Image Synthesis

COS 526, Fall 2010 Tom Funkhouser Slides from Rusinkiewicz, Shirley

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- · Sampling techniques
- Conclusion

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

Outline Motivation Monte Carlo integration Monte Carlo path tracing Variance reduction techniques Sampling techniques Conclusion

Step 1: Choose a ray p=camera, d=(θ, φ); assign weight = 1 Step 2: Trace ray to find intersection with nearest surface Step 3: Randomly choose between emitted and reflected light – Step 3a: If emitted, return weight * Le Step 3b: If reflected, weight *= reflectance Generate ray in random direction Go to step 2

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- · Sampling techniques
- Conclusion

Variance Reduction Techniques

- Importance sampling
- · Stratified sampling
- · Metropolis sampling
- Quasi-random

$$\int_{0}^{1} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Outline

- Motivation
- Monte Carlo integration
- Monte Carlo path tracing
- Variance reduction techniques
- Sampling techniques
- Conclusion

Simple Monte Carlo Path Tracer

- Step 1: Choose a ray (u,v,θ,ϕ) ; assign weight = 1
- Step 2: Trace ray to find intersection with nearest surface
- Step 3: Randomly choose between emitted and reflected light
 - Step 3a: If emitted, return weight * Le

Step 3b: If reflected, weight *= reflectance

Go to step 2

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- · Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- · Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Monte Carlo Extensions

- Unbiased
 - Bidirectional path tracing
 - Metropolis light transport
- · Biased, but consistent
 - Noise filtering
 - Adaptive sampling
 - Irradiance caching

Summary

- Monte Carlo Integration Methods
 - Very general
 - Good for complex functions with high dimensionality
 - Converge slowly (but error appears as noise)
- - Preferred method for difficult scenes
 - Noise removal (filtering) and irradiance caching (photon maps) used in practice

More Information

- Books

 - Realistic Ray Tracing, Peter Shirley
 Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen

- Robust Monte Carlo Methods for Light Transport Simulation, Eric Veach
 Mathematical Models and Monte Carlo Methods for Physically Based
 Rendering, Eric La Fortune

• Course Notes

- Mathematical Models for Computer Graphics, Stanford, Fall 1997
 State of the Art in Monte Carlo Methods for Realistic Image Synthesis, Course 29, SIGGRAPH 2001