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Monte Carlo Integration Motivation
for Image Synthesis
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COS 526, Fall 2010 Sampling techniques
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Motivation Challenge

Rendering = integration Surface * Rendering integrals are difficult to evaluate
— Antialiasing — Multiple dimensions ”

— Soft shadows — Discontinuities

— Indirect illumination . * Partial occluders

— Caustics « Highlights
« Caustics

Surface Iénsen

Outline Integration in 1D
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We can approximate
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Estimating the average

E(f(x))
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Multidimensional Domains

- Same ideas apply for integration over ...
— Pixel areas
— Surfaces
— Projected areas
— Directions .
— Camera apertures Pixe
— Time
— Paths

Surface

Or we can average
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Monte Carlo Path Tracing Simple Monte Carlo Path Tracer

Specul . .
* Integrate radiance S'iﬁfc:czr « Step 1: Choose a ray p=camera, d=(6,¢); assign weight = 1

for each pixel
by sampling paths
randomly

« Step 2: Trace ray to find intersection with nearest surface

< Step 3: Randomly choose between emitted and reflected light
— Step 3a: If emitted,
return weight * Le
— Step 3b: If reflected,
2 weight *= reflectance
Generate ray in random direction
Go to step 2

Diffuse Surface

Monte Carlo Path Tracing Monte Carlo Path Tracing

« Advantages
— Any type of geometry (procedural, curved,
— Any type of BRDF (specular, glossy, diffus
— Samples all types of paths (L(SD)*E)
— Accuracy controlled at pixel level
— Low memory consumption
— Unbiased - error appears as noise in final image

Disadvantages
— Slow convergence

. " . — Noise in final i
Big diffuse light source, 20 minutes R I

Monte Carlo Path Tracing Variance

1000 paths/pixel
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Variance

Motivation
Monte Carlo integration
Monte Carlo path tracing
Variance reduction techniques
Variance decreases as 1/N . .
Error decreases as 1/sqrt(N) Sampling techniques

Conclusion

Variance Variance Reduction Techniques

* Problem: variance decreases with 1/N * Importance sampling
— Increasing # samples removes noise slowly - Stratified sampling

» Metropolis sampling

e Quasi-random

Importance Sampling Importance Sampling

« Put more samples where f(x) is bigger e This is still unbiased

forallN




Importance Sampling

» Zero variance if p(x) ~ f(x)

Less variance with better
importance sampling

Stratified Sampling

e This is still unbiased

Ei(f(x))

Outline
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Stratified Sampling

» Estimate subdomains separately

Ex(f(x))

Stratified Sampling

¢ Less overall variance if
less variance in subdomains

Ex(f(x)) H

Simple Monte Carlo Path Tracer

Step 1: Choose a ray (u,v,6,¢); assign weight = 1
Step 2: Trace ray to find intersection with nearest surface

Step 3: Randomly choose between emitted and reflected light
— Step 3a: If emitted,
return weight * Le

— Step 3b: If reflected,
weight *= reflectance

Go to step 2
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Sampling Techniques Generating Random Points

» Uniform distribution:
— Use random number generator

* Problem: how do we generate random
points/directions during path tracing?
— Non-rectilinear domains
— Importance (BRDF)
— Stratified

[

Probability

Surface

Generating Random Points Generating Random Points

» Specific probability distribution:

» Specific probability distribution:
— Function inversion

— Function inversion
— Rejection

— Metropolis

— Rejection
— Metropolis

[y

Probability
Cumulative
Probability

Generating Random Points Generating Random Points

« Specific probability distribution:
— Function inversion
— Rejection
— Metropolis

« Specific probability distribution:
— Function inversion
— Rejection
— Metropolis

Cumulative
Cumulative
Probability
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Generating Random Points

Generating Random Points

» Specific probability distribution:
— Function inversion
— Rejection 1
— Metropolis

» Specific probability distribution:
— Function inversion
— Rejection
— Metropolis

[y

Cumulative

Probability
Cumulative
Probability

Generating Random Points Generating Random Points

» Specific probability distribution:

» Specific probability distribution:
— Function inversion

— Function inversion
— Rejection

— Metropolis

[

— Rejection
— Metropolis

[y

Probability
Probability

Generating Random Points Combining Multiple PDFs

» Balance heuristic
— Use combination of samples generated for each PDF

— Number of samples for each PDF chosen by weights

« Specific probability distribution:
— Function inversion
— Rejection
— Metropolis

[ay

— Near optimal

Probability
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Monte Carlo Extensions Monte Carlo Extensions
¢ Unbiased
— Bidirectional path tracing
— Metropolis light transport

e Unbiased
— Bidirectional path tracing

— Metropolis light transport
» Biased, but consistent

* Biased, but consistent
— Noise filtering

— Noise filtering
— Adaptive sampling — Adaptive sampling

— Irradiance caching — Irradiance caching

RenderPark

Monte Carlo Extensions Monte Carlo Extensions
¢ Unbiased
— Bidirectional path tracing
— Metropolis light transport

¢ Unbiased
— Bidirectional path tracing
— Metropolis light transport

* Biased, but consistent -~ « Biased, but consistent
— Noise filtering

— Noise filtering

— Adaptive sampling

— Adaptive sampling
— Irradiance caching

— Irradiance caching

Heinrich

Filtered

Monte Carlo Extensions Monte Carlo Extensions
* Unbiased
— Bidirectional path tracing
— Metropolis light transport

¢ Unbiased
— Bidirectional path tracing
— Metropolis light transport
* Biased, but consistent 1 » Biased, but consistent
— Noise filtering

— Noise filtering
— Adaptive sampling

— Adaptive sampling
— Irradiance caching

— Irradiance caching

Adaptive Ohbuchi



Summary

* Monte Carlo Integration Methods
— Very general
— Good for complex functions with high dimensionality
— Converge slowly (but error appears as noise)
Conclusion
— Preferred method for difficult scenes
— Noise removal (filtering) and

irradiance caching (photon maps)
used in practice
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More Information

» Books

— Realistic Ray Tracing, Peter Shirley

— Realistic Image Synthesis Using Photon Mapping, Henrik Wann Jensen
» Theses

— Robust Monte Carlo Methods for Light Transport Simulation, Eric Veach

— Mathematical Models and Monte Carlo Methods for Physically Based
Rendering, Eric La Fortune

e Course Notes

— Mathematical Models for Computer Graphics, Stanford, Fall 1997

— State of the Art in Monte Carlo Methods for Realistic Inage Synthesis,
Course 29, SIGGRAPH 2001




