

Overview

- Rendering equation
- Radiometry
- Local light transport
- Definition of BRDF
- BRDF properties and common BRDFs

Light Emitted from a Surface in a Direction

- Power per unit area per unit solid angle *Radiance* (L)
 - Measured in W/m²/sr
 - Projected area perpendicular to given direction

Radiance as a unit of measure

- Radiance doesn't change with distance
 Therefore it's the quantity we want to measure in a ray tracer.
- Radiance proportional to what a sensor (camera, eye) measures.
 - Therefore it's what we want to output.

 Reflected radiance is proportional to incoming flux and to irradiance (incident power per unit area).

$$dL_r(\vec{\omega}_r) \propto dE(\vec{\omega}_i)$$

Bidirectional Reflectance Distribution Function

$$f_{r}(\boldsymbol{\omega}_{i} \rightarrow \boldsymbol{\omega}_{o}) = \frac{L_{0}(\boldsymbol{\omega}_{o})}{E_{i}(\boldsymbol{\omega}_{i})}$$

• 4-dimensional function: also written as

$$f_r(\theta_t, \varphi_t, \theta_o, \varphi_o) = \frac{L_o(\theta_o, \varphi_o)}{E_i(\theta_t, \varphi_i)}$$

(the symbol ho is also used sometimes)

BRDF Representations

- Physically-based vs. phenomenological models
- Measured data
- Desired characteristics:
 - Fast to evaluate
 - Maintain reciprocity, energy conservation
 - For global illumination: easy to importance sample

Diffuse

• The simplest BRDF is "ideal diffuse" or Lambertian: just a constant

$f_r(\boldsymbol{o}_i \rightarrow \boldsymbol{o}_o) = k_d$

Note: does *not* include cos(θ_i)
 – Remember definition of irradiance

Diffuse BRDF
• Assume BRDF reflects a fraction ρ of light
$\int_{a_{\rm elements}} f_{a_{\rm elements}}(a_{\rm elements} \rightarrow a_{\rm elements}) \cos \theta_{\rm e} da_{\rm elements} = \rho$
$2mk_s \int \sin\theta_s \cos\theta_s d\theta_s = \rho$
π _a =ρ
· frienden = P
• The quantity $ ho$ is called the albedo

Phong BRDF

Phenomenological model for glossy reflection

I is a vector to the light source*r* is the direction of mirror reflection

- Exponent *n* determines width of specular lobe
- Constant k_s determines size of lobe

 Assume surface consists of tiny "microfacets" with mirror reflection off each

Radiometric a	and Photomet	ric Units
---------------	--------------	-----------

Radiant energy	Luminous energy
Joule (J)	Talbot
Radiant flux or power (F)	Luminous power
Watt (W) = J / sec	Lumen (lm) = talbot / sec = $cd \cdot sr$
Radiant intensity (I)	Luminous intensity
W / sr	Candela (cd)
Irradiance (E)	Illuminance
W / m ²	$Lux = Im / m^2$
Radiance (L)	Luminance
W / m ² / sr	Nit = $\text{Im} / \text{m}^2 / \text{sr}$
Radiosity (B)	Luminosity
W / m ²	$Lux = lm / m^2$