Image Analogies
SIGGRAPH 2001

Aaron Hertzmann1,2
Chuck Jacobs2
Nuria Oliver2
Brian Curless3
David Salesin2,3

1New York University
2Microsoft Research
3University of Washington

The Approach

Unfiltered source
Filtered source

Unfiltered target
Filtered target

The Approach

Unfiltered source
Filtered source

Unfiltered target
Filtered target

Unfiltered source
Filtered source

Unfiltered target
Filtered target

Function CREATEIMAGEANALOGY(A, A', B, B', s, t, q)
- Compute Gaussian pyramid for A, A', and B
- Initialize the search structure (e.g., for ANN)
- for each level l, from coarsest to finest, do:
 - for each pixel y ∈ IC, in scan-line order, do:
 - p = BESTMATCH(A, A', B, B', s, t, q)
 - R(p) = Nl(p)
 - next p
- return K

Function BESTMATCH(A, A', B, B', s, t, q)
- d(A) = BESTMATCH-MATCH(A, A', B, B', s, t, q)
- d(A') = BESTMATCH-MATCH(A, A', B, B', s, t, q)
- d(A) = BESTMATCH-MATCH(A, A', B, B', s, t, q)
- d(A') = BESTMATCH-MATCH(A, A', B, B', s, t, q)
- if d(A) ≤ d(A') + 2^l * s, then
 - return d(A)
- return d(A')
Implementation Details

- Use approximate nearest neighbor search and Ashikhmin’s coherence search heuristic
- Use feature vectors instead of pixel values
 - Feature vector can consist of RGB values plus additional “channels” such as luminance, outputs of derivative filters
- Luminance remapping to align color histograms of source and target images

Blur Filter

Edge Filter

Colorization

Texture Synthesis

- Source images (A, B) are blank/constant

Texture Synthesis
Texture Transfer

- A and A' is the same (or A is a blurred version of A')
- Optional: Tunable weight to control the tradeoff between matching (A, B) and (A', B')

Artistic Filters

- Unfiltered source
- Filtered source

Artistic Filters

- A
- A'
- B
- B'
Artistic Filters

More Artistic Filters

Texture-by-numbers

Dealing with progressively variant textures

- Project idea: inverse “texture by numbers”
Super-resolution

Super-resolution (result!)