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1 Overview

Concluding the coverage of Markov chain Monte Carlo (MCMC) sampling
methods, we look today at Gibbs sampling. Gibbs sampling is a simple and
widely used method for generating random samples from a joint distribution
over several variables when this distribution is not known and/or is difficult
to calculate. Instead, Gibbs sampling draws from the conditional distribu-
tions of the variables in a manner that approximates the joint distribution
over time. This makes Gibbs sampling particularly useful for approximate
inference in Bayesian networks.

2 Sampling Procedure

Consider a vector x of K random variables

x = 〈x1, x2, . . . , xK〉

and a set of observed data D. Gibbs sampling operates iteratively in the fol-
lowing manner: For each iteration, sample from the conditional distribution
of xk given x−k (the vector of all variables except xk) for k = 1, 2, . . . K.

xk ∼ P (xk | x−k,D) for k = 1 . . . K

It can be shown that this method of sampling defines a Markov chain on x
whose stationary distribution is P (x | D). Thus, as we gather more samples,
we tend towards the joint distribution P (x | D).
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3 Relation to Metropolis-Hastings

Gibbs sampling is in fact a specific case of the more general Metropolis-
Hastings algorithm (previously discussed in class). Consider running Metropolis-
Hastings with the transition probabilities Bk = P (xk | x−k), i.e., the univari-
ate conditional probabilities of each variable given all other variables. This
implies that the selection factor Ak is

Ak(x
′) = min

(
1,
P (x′)Bk(x

′,x)

P (x)Bk(x,x′)

)
We may decompose the Bk’s in the second argument of the min above as
follows:

P (x′)Bk(x
′,x)

P (x)Bk(x,x′)
=
P (x′−k)P (x′k | x′−k)P (xk | x−k)
P (x−k)P (xk | x−k)P (x′k | x−k)

Since the probabilities involving xk and x′k are the same for all k, the
terms in the numerator and denominator directly cancel; therefore, the entire
expression is equal to 1. Gibbs sampling is thus equivalent to the Metropolis-
Hastings algorithm where the quantity Ak is always equal to 1, a significant
simplification.

4 Example

Consider the Bayesian mixture model represented by the graphical model in
Fig. 1:

Figure 1: A Bayesian mixture model

In this model, we suppose that our data points x1:N are drawn from
the mixture of distributions defined by the means µ1:K . In the Bayesian
tradition, we also place a prior distribution over the means µ1:K with the

2



hyperparameter λ: µk ∼ N(0, λ). We define z1:N as the K-dimensional
vectors of indicators that represent the mixture component from which each
data point is drawn; that is, xn is drawn from µk when (zn)k = 1; all other
(zn)i where i 6= k will be 0. Thus, we model our data by a two-step random
process: first, a distribution is selected from the mixture (parameterized by
π), and then the data points are sampled from this distribution:

zn ∼ Multinomial(π)

xn | zn,µ1:K ∼ N(µzn , σ
2)

An “expanded” example of the model can be seen in Fig. 2.

Figure 2: An expanded example of the model

In this example, we might be interested in computing approximations
of various distributions, such as the conditional distribution of the mixture
component location given the example data, P (µ1:K | x1:N). While exact
methods are difficult for this type of problem, approximate inference suffi-
ciently simplifies the process.

Suppose that we have sampled S(m) = 〈µ1:K , z1:N〉 from the distribution
P (µ1:K , z1:N | x1:N). We may use these samples for approximate inference:

1

M

M∑
m=1

δS(m)µ1:K
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For generating samples of this nature, we can use the Gibbs sampler with
the appropriate univariate conditional probabilities:

(1) P (µi | µ−i, z,x) ∝ P (µi)
∏

n: zn=i

P (xn | µi)

(2) P (zn | z−n,µ,x) ∝ P (zn)P (xn | µzn)

For (1), this approximation is computable because we have chosen the
prior P (µi) to be conjugate to the likelihood P (xn | µi). For (2), we have
P (zn)P (xn | µzn) = P (zn | xn,µ1:K), a K-way multinomial. By iteratively
sampling from (1) and (2), we may obtain the necessary estimates for calcu-
lating probabilities of interest.

5 Conclusions

Many issues and possible extensions may arise when using Gibbs sampling.
The process of collapsing allows one to integrate out hidden variables in
the conditional distributions and improve computation efficiency, as in the
following example:

P (zn | z−n,x) ∝
∫
µ

P (zn,µ1:K | z−n,x)

=

∫
µ

P (zn | µ1:K , z−n, x)P (µ1:K | z−n,x)

= P (zn)

∫
µ

P (xn | µzn)P (µzn | xm: zm=zn)

Collapsed Gibbs sampling is an example of a more general technique known as
Rao-Blackwellizaiton, by which general statistical estimators of an unknown
quantity can be improved using a sufficient statistic for that quantity.

Diagnostics for convergence are important to consider, since the sampling
process must be close to converging in order to obtain reasonably accurate
results. It is possible that better choices for the Metropolis-Hastings tran-
sition probabilities than the univariate conditionals used in Gibbs sampling
may lend themselves to faster convergence; however, Gibbs sampling is useful
at least for a “first try.”

For more information on Gibbs sampling and other MCMC methods, see
the book Introducting Monte Carlo Methods with R (Robert & Casella, 2004).
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As an additional note, there exists software for laying out graphical mod-
els that can determine the Gibbs sampler for you—see BUGS, JAGS, and
HBC.
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