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Introduction

We have seen several latent variable models so far (Factor analysis, Hidden Markov models, mixture
models), as well as Tree Propagation, an algorithm for exact inference. However, there are a number
of interesting cases in which exact inference methods are computationally infeasible. Today we
discuss methods for approximate inference.

1 Approximate Inference

Example 1: Let µ ∼ N(0, λ), xn ∼ N(µ, σ2) ∀n = 1, . . . , N , as shown in Figure 1 below. If p(µ)
is Gaussian, then p(µ | x1:N ) is also Gaussian.
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Figure 1: Graphical Model Representation of Example 1

Example 2: Now suppose that x1:N came from a K-mixture. (See Figure 2 for the graphical model
representation.)

µk ∼ N(0, λ) ∀k = 1, . . . ,K
zn ∼Mult(π) ∀n = 1, . . . , N

xn | zn ∼ N(µzn , σ
2)

Here, p(µ1, . . . , µK | x1:N ) is not easy to compute. Suppose that π is fixed and K = 3:

p(µ1, µ2, µ3 | x1:N ) =
p(µ1, µ2, µ3, x1:N )

p(x1:N )
, (1)

where:

p(µ1, µ2, µ3, x1:N ) = p(µ1)p(µ2)p(µ3)
N∏
n=1

(
3∑

k=1

πkp(xn | µk)

)
(2)
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Figure 2: Graphical Model Representation of Example 2

and where:

p(x1:N ) =
ˆ
µ1

ˆ
µ2

ˆ
µ3

p(µ1)p(µ2)p(µ3)
N∏
n=1

3∑
i=1

πip(xn | µi).

Or equivalently, marginalizing out the zn’s instead of the µk’s:

p(x1:N ) =
∑
z1:N

(
K∏
k=1

(ˆ
µk

p(µk)
∏

n:zn=1

p(xn | µzn)

))
(3)

Notice, however, that the quantity in Equation 3 is difficult to compute, since the outside sum
is over every possible configuration of z1:N . Thus, exact inference in this case is O(KN ).

Practical Bayesian models usually require approximate posterior inference. Sampling methods are
one kind of approximation. Recall Equation 2:

p(µ1, µ2, µ3, x1:N ) = p(µ1)p(µ2)p(µ3)
N∏
n=1

(
3∑

k=1

πkp(xn | µk)

)
=
∑
zn

p(xn, zn | µzn)

=
∑
zn

p(zn)p(xn | zn, µzn)

=
∑
zn

πznp(xn | µzn)

If the parameters are unobserved, then clusters assignments are interdependent. That is, assuming
that a given point is in a certain cluster changes the likelihood that other points are in that cluster.

2 Sampling methods

Denote the target distribution by p(x). (p(x) could be a posterior distribution or anything else.)
Idea – approximate p(x) with a set of samples:

p(x) ≈ 1
N

N∑
i=1

δx(i)(x),

where x(i) are samples from the target.
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2.1 Rejection sampling

Suppose that we can compute p but cannot sample from it. However, there exist some q and M
such that we can sample from q and:

p(x) ≤Mq(x) ∀x.

Algorithm 1 Rejection sampling
for i = 1, . . . , N do

sample x(i) ∼ q(x)
sample u ∼ Unif(0, 1)
if u < p(x(i))

Mq(x(i))
then

Accept sample x(i) and increment i

Rejection sampling has the clear limitation that one must be able to compute p(x).

2.2 Importance sampling

Suppose (still) that we can compute p(x). Suppose (also) that q(x) has the same support as p(x)
but no other restrictions. Then for arbitrary f :

E[f(x)] ,
ˆ
x
f(x)p(x)dx

=
ˆ
x
f(x)p(x)

q(x)
q(x)

dx

≈ 1
N

N∑
i=1

f(x(i))w(x(i)), (4)

where x(i) ∼ q(x) and

w(x(i)) =
p(x(i))
q(x(i))

.

In Equation 4, q and w are referred to as the “proposal distribution” and “importance weight”,
respectively.

3 Markov Chain Monte Carlo (MCMC)

MCMC lets us collect samples from a wide class of distributions, scales well with dimension, and we
only need to know p(x) up to some constant Z. That is:

p(x) =
p̃(x)
Z

In Bayesian applications, this condition is quite often satisfied (e.g. Equation 1).

Idea – draw a sample x∗ from the proposal distribution q, and accept according to some criterion,
which may be random.
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Algorithm 2 Metropolis algorithm (1953)
Require: q(x1 | x2) = q(x2 | x1)

loop
sample x(t+1) ∼ q, given x(t)

sample u ∼ Unif(0, 1)
A(x(t+1), x(t))← min

(
1, p(x

(t+1))

p(x(t))

)
if u < A(x(t+1), x(t)) then

Accept x(t+1)

else
x(t+1) ← x(t)

If q(x1 | x2) > 0 for all x1, x2, then

pm(x(t))→ p(x) as t→∞

General idea behind MCMC – define a Markov chain on x whose stationary distribution is the
target distribution.

Recipe –

1. Run Markov chain for a long time (forever, if possible)

2. Collect samples at some lag (forever, if possible)
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