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1 Final Project Ideas

Jonathan Cohen’s schizophrenic data
Kenneth Norman’s fmri data
Online text data (i.e. news sites)

kaggle.com is a site for participants to compete against each other to
produce the best models for data sets

movielens.org provides data sets that contain movie preferences (see
grouplens.org/node/73)

2 Hidden Markov Models

Recall from the previous class that a hidden markov model is a generalization
of the finite mixture model, with 2.7 representing the indices of clusters
associated with xq.7, the data.
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Figure 1: Graphical Model for HMMs




The transition probability is p(2¢|z—1) or equivalently a,, , .. The emis-
sion probability is p(z|z;) or equivalently p(z;]6.,).

Recall that EM is broken down into two steps:

1. Compute conditional expectations of the hidden variables.

2. Maximize the complete log likelihood using the expectations in 1.

Elz{|z1r] = p(z = ilz1r) (1)

Equation 1 is the expectation that the indicator vector z, for some obser-
vation t, takes on the mixture component 7, conditioned on the data. From
a simplified speech recognition perspective, this is the probability that, for
some piece of a waveform ¢, we recognize it as a particular word 1.

Z I'm going to San Francisco

Figure 2: Speech Recognition Example

Similarly,
Elzi_y2|v1r] = plzees = i, 2 = jlz1r) (2)

Recall that we defined alpha and beta as follows (each is a vector of K
elements):

A

a(zt) = p(x1, 2) (3)

B(z) = p(zi_17|2t) (4)



And the expectations (from Equations 1 and 2):

a(2)B(z)
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We can define p(xy.r) as follows:

iUlT ZP 1U1T|21T (Z1T)

21:T

= Z(Hp(xt|zt Hp 2| ze-1))

z1.7 t=1 t=2
We can evaluate p(z1.7) by the following:

a(2)B(2)
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Z a(2)B(2) —1

—  p(r1r)

Z a(z)B(2t) = p(w1.7)

zt

(9)

Then all that’s left is to update «(z;) and 3(z;). For the base case a(z1),

we recall the graphical model:

Figure 3: Graphical Model for z; and x;



a(z21) = p(z1, 21)
= p(21)p(w1]21) (10)
= 71-,le(xl |921)

Now we can assume that we have computed a(z;) and find a recursive
formula a(z441):

Oé(ZtH) = p($1:t+1, Zt+1)

= p(@1e41]2041)P(2e41) (1)
Our graphical model again:
Zt+1
@) @ @
Figure 4: Graphical Model for HMMs
Using Bayes Ball, the following independence holds:
Tir1 AL 1|2 (12)



Then, from Equations 11 and 12:

a(ze41) = P(T 1| 2e41)P(Te41 ] 2041)P(2041)
= p(T1, 2e41)P(Teq1]2041)

= Zp(fflzt, 2ty 2641)P(Ter1]2e41)

Zt

- Zp(l’l:t, 2| 2)p(Ter|ze0)p(2) (13)

Zt

- Zp(xlit‘zt)p@tﬂ |20)p(2e)p(Te41|2e41)

Zt

= Zp(ﬂhzt, 20)P(2e41|26)p(Tes1]2641)

zt

In the last line of Equation 13, the first term corresponds to «a(z;), the
second is the transition probability a., .,.,, and the last is the emission prob-
ability p(2441/0s,.,). Computing a(zp41) from a(z) is O(K?). Computing all
of the alphas is O(TK?).

We now develop a recursive equation for 3(z;):

>

5(ZT) T
5(2%) = p($t+1;T|Zt)

= ZP(%H:T, 241 |Zt)

Zt41

= Zp(xt+1:T|Zt+1, z0)p(2e11]2t) (14)

Zt+1

= Zp(ft+1:T|Zt+1)P(zt+1|Zt)

Zt+1

= Zp($t+2:T|Zt+1)p(xt+l’ZtJrl)p(ZtJrl‘zt)

Zt+1

In the last line of Equation 14, the first term corresponds to 3(z;11), the
second is the emission probability p(z¢41]0s,.,), and the third the transition
probability a, ., .



