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1 Final Project Ideas

Jonathan Cohen’s schizophrenic data

Kenneth Norman’s fmri data

Online text data (i.e. news sites)

kaggle.com is a site for participants to compete against each other to
produce the best models for data sets

movielens.org provides data sets that contain movie preferences (see
grouplens.org/node/73)

2 Hidden Markov Models

Recall from the previous class that a hidden markov model is a generalization
of the finite mixture model, with z1:T representing the indices of clusters
associated with x1:T , the data.

Figure 1: Graphical Model for HMMs
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The transition probability is p(zt|zt−1) or equivalently azt−1,zt . The emis-
sion probability is p(xt|zt) or equivalently p(xt|θzt).

Recall that EM is broken down into two steps:

1. Compute conditional expectations of the hidden variables.

2. Maximize the complete log likelihood using the expectations in 1.

E[zit|x1:T ] = p(zt = i|x1:T ) (1)

Equation 1 is the expectation that the indicator vector z, for some obser-
vation t, takes on the mixture component i, conditioned on the data. From
a simplified speech recognition perspective, this is the probability that, for
some piece of a waveform t, we recognize it as a particular word i.

Figure 2: Speech Recognition Example

Similarly,

E[zit−1z
j
t |x1:T ] = p(zt−1 = i, zt = j|x1:T ) (2)

Recall that we defined alpha and beta as follows (each is a vector of K
elements):

α(zt) , p(x1:t, zt) (3)

β(zt) , p(xt−1:T |zt) (4)
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And the expectations (from Equations 1 and 2):

E[zt|x1:T ] =
α(zt)β(zt)

p(x1:T )
(5)

E[zt−1zt|x1:T ] =
α(zt−1)p(zt|zt−1)p(xt|zt)β(zt)

p(x1:T )
(6)

We can define p(x1:T ) as follows:

p(x1:T ) =
∑
z1:T

p(x1:T |z1:T )p(z1:T )

=
∑
z1:T

(
T∏
t=1

p(xt|zt))(p(z1)
T∏
t=2

p(zt|zt−1))

(7)

We can evaluate p(x1:T ) by the following:

p(zt|x1:T ) =
α(zt)β(zt)

p(x1:T )
(8)

∑
zt

α(zt)β(zt)

p(x1:T )
= 1∑

zt

α(zt)β(zt) = p(x1:T )
(9)

Then all that’s left is to update α(zt) and β(zt). For the base case α(z1),
we recall the graphical model:

Figure 3: Graphical Model for z1 and x1
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α(z1) = p(x1, z1)

= p(z1)p(x1|z1)
= πz1p(x1|θz1)

(10)

Now we can assume that we have computed α(zt) and find a recursive
formula α(zt+1):

α(zt+1) = p(x1:t+1, zt+1)

= p(x1:t+1|zt+1)p(zt+1)
(11)

Our graphical model again:

Figure 4: Graphical Model for HMMs

Using Bayes Ball, the following independence holds:

xt+1 ⊥⊥ x1:t|zt+1 (12)
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Then, from Equations 11 and 12:

α(zt+1) = p(x1:t|zt+1)p(xt+1|zt+1)p(zt+1)

= p(x1:t, zt+1)p(xt+1|zt+1)

=
∑
zt

p(x1:t, zt, zt+1)p(xt+1|zt+1)

=
∑
zt

p(x1:t, zt+1|zt)p(xt+1|zt+1)p(zt)

=
∑
zt

p(x1:t|zt)p(zt+1|zt)p(zt)p(xt+1|zt+1)

=
∑
zt

p(x1:t, zt)p(zt+1|zt)p(xt+1|zt+1)

(13)

In the last line of Equation 13, the first term corresponds to α(zt), the
second is the transition probability azt,zt+1 , and the last is the emission prob-
ability p(xt+1|θzt+1). Computing α(zt+1) from α(zt) is O(K2). Computing all
of the alphas is O(TK2).

We now develop a recursive equation for β(zt):

β(zT ) , ~1

β(zt) = p(xt+1:T |zt)

=
∑
zt+1

p(xt+1:T , zt+1|zt)

=
∑
zt+1

p(xt+1:T |zt+1, zt)p(zt+1|zt)

=
∑
zt+1

p(xt+1:T |zt+1)p(zt+1|zt)

=
∑
zt+1

p(xt+2:T |zt+1)p(xt+1|zt+1)p(zt+1|zt)

(14)

In the last line of Equation 14, the first term corresponds to β(zt+1), the
second is the emission probability p(xt+1|θzt+1), and the third the transition
probability azt,zt+1 .
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