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1. INTRODUCTION

In this lecture we consider how to model sequential data. Rather than as-
suming that the data are all independent of each other we assume they come
in sequence X1..T = x1, x2.., xT . There are two types of sequential mod-
els that are quite similar to each other: Hidden Markov Model (HMM) and
Kalman Filter. This lecture focuses on HMM which has many applications
including genome modeling and action recognition.

HMMs are a generalization of the finite mixture model (MM) to se-
quences. In MM, the process of generating IID data involves choosing a

FIGURE 1. Diagram representing transitions between mixture
components 1, 2, 3 and observed data. The probability of tran-
sition is shown on the edges. xs represent data points and x1 and
x2 are indicated by the yellow and red x respectively.
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FIGURE 2. Graphical Model

component according to a distribution p(z), independent of choice of com-
ponents in other steps, and choosing a data vector from the distribution,
p(x |z). In HMM, the mixture component is chosen dependent on the pre-
vious component. Each component can be seen as a state, and we augment
the basic MM to include a matrix of transition probabilities.

Figure 1 illustrates this difference. The xs are elements of the sequence.
Let the yellow x represent x1 and the red x represent x2. Then in MM, x2
is approximately equally likely to belong to component 2 or 3. In HMM,
x2 is more likely to belong to component 2, since x1 belongs to 1, and the
probability of state transition from 1 to 2 is high.

2. GRAPHICAL MODEL FOR HMM

In Figure 2, each of the zt is a multinomial random variable represented
by a indicator vector of size K , whose component i is 1 if the cluster index
i (for the clusters associated with data x1:T ) is indicated, and 0 if not. For
a particular configuration (z, y) = (z1, z2, .., zT , x1, x2, ..xT ) as shown in
Figure 2, the joint probability is given by the product of local conditional
probabilities as follows:

(1) p(z1..T , x1..T ) = p(z1)

T∏
t=2

p(zt |zt−1)

T∏
t=1

p(xt |zt)

We assume above that the distribution p(xt |zt) is independent of t.

2.1. Emission probabilities. For a given state k, there is a set of emission
probabilities governing the distribution of yt and we represent it by θk . For
example, θk could be a parameter to a multivariate Gaussian or multinomial
Poisson. Thus p(xt |zt) can be written as:
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(2) p(xt |zt) =

K∏
k=1

p(xt |θk)
zk

t

2.2. Transition probabilities. Define a K x K state transition matrix A,
where each entry ai j is the probability p(z j

t = 1|zi
t−1 = 1). The probability

of the next state zt given the current zt−1 is given by:

(3) p(zt |zt−1) =

K∏
k=1

K∏
j=1

[a jk]z j
t−1zk

t

Since only one component of zt or zt−1 is 1, there is only one factor on
the right-hand side that is different from one.

2.3. Initial distribution. The first state node in the sequence has no par-
ents. Thus we define π to be the distribution where πk = p(zk

1 = 1). A
more formal definition is as follows:

(4) p(z1) =

K∏
k=1

π
zk

1
k

2.4. Conditional independence. From the graphical model, and using Bayes
ball, we can see that conditioning on zt−1 renders zt and zt−2 independent.
Thus the future is independent of the past, given the present. This is the
Markov property. Note that this is not true when conditioned on the output
node xt−1 instead of zt−1.

3. ESTIMATING HMM PARAMETERS USING THE EM ALGORITHM

The parameters of an HMM include the emission probabilities θ̂ , the tran-
sition matrix Â and the initial probability distribution π̂ . Given data x1..T ,
we want to estimate these parameters. First we write down the expected
complete log likelihood using equations 1 to 4 with respect to the posterior
p(z1..T |x1..T ):

(5)

E[logp(x1..T , z1..T )] = E[log{
K∏

k=1

π
zk

1
k

T∏
t=2

K∏
j=1

K∏
k=1

[a jk]z j
t−1zk

t

T∏
t=1

K∏
k=1

p(xt |θk)
zk

t }]
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(6)

=

K∑
k=1

E[zk
1] logπk +

T∑
t=2

K∑
j=1

K∑
k=1

E[z j
t−1zk

t ] log[a jk] +
T∑

t=1

K∑
k=1

E[zk
t ] logp(xt |θk)

E step. We need to compute the following conditional expectations. We
will return to these expectations at the end of this section.

(7) E[zk
t ] = p(zt = k|x1..T )

(8) E[z j
t−1zk

t ] = p(zt−1 = j, zt = k|x1..T )

M step. In the M step, the parameters are adjusted using a process that is
equivalent to assuming that the latent variables have been observed. Hold-
ing the above expectations fixed, we optimize the parameters to try to even-
tually converge to a maximum likelihood estimate. An estimate for the prior
probability of state z1, πk is given by:

(9) πk = E[zk
1]/

k∑
j=1

E[z j
1]

We then estimate the probability of moving from j th state to kth state. In
equation 10, the numerator is the number of transitions from j th to kth state
and the denominator the total number of transitions from j th state.

(10) a jk =

T∑
t=2

E[z j
t−1zk

t ]/
T∑

t=2

k∑
l=1

E[z j
t−1zl

t ]

θk is estimated as the weighted maximum likelihood estimate with weights
given by E[zk

t ]. For example, in the Gaussian case, µk , the cluster center, is
estimated as follows:

(11) µk =

T∑
t=1

E[zk
t ]xt/

T∑
t=1

E[zk
t ]

Each term in the numerator in equation 11 is the probability of xt being
in cluster k multiplied by xt , and the denominator is the expected number



COS 513: SEQUENCE MODELS I LECTURE ON NOV 22, 2010 5

of data points in cluster k. The multinomial case where each xt has exactly
one of D fixed, finite outcomes, is as follows:

(12) p(xt |θk) =

D∏
i=1

θ
x i

t
k,i

(13) θk,i =

T∑
t=1

E[zk
t ]x i

t /

T∑
t=1

E[zk
t ]

Now, let us consider how to compute E(zt |x1..T ) and E[zt−1, zt |x1..T ] in
the E step. Define α(zt), β(zt) as follows using a simple application of the
Bayes rule, chain rule and conditional independence.

E[zt |x1..T ] = p(zt |x1..T )

= p(zt , x1..T )/p(x1..T )

= p(x1..t , zt).p(xt+1..T |zt)/p(x1..T )

= α(zt).β(zt)/p(x1..T )

α(zt) is the probability of emitting a sequence of outputs x1..t and ending
up in state zt . β(zt) is the probability of emitting a sequence of outputs
xt+1..T starting from state zt .

E[zt−1, zt |x1..T ] = p(zt−1, zt |x1..T )

= p(x1..T , zt−1, zt)/p(x1..T )

= p(x1..t−1, zt−1).p(xt..T , zt |x1..t−1, zt−1)/p(x1..T )

= p(x1..t−1, zt−1).p(zt |zt−1).p(xt..T |zt , zt−1)/p(x1..T )

= p(x1..t−1, zt−1).p(zt |zt−1).p(xt |zt , zt−1).p(xt+1..T |zt , zt−1)/p(x1..T )

= p(x1..t−1, zt−1).p(zt |zt−1).p(xt |zt).p(xt+1..T |zt)/p(x1..T )

= α(zt−1).p(zt |zt−1).p(xt |zt).β(zt)/p(x1..T )

(14)

In the above sequence of equations, step 3 follows from splitting the se-
quence x1..T into x1..t−1 and xt..T , and applying Bayes rule. In step 4, we
use the independence of zt from x1..t−1 given zt−1, and the independence
of xt..T from x1..t−1 given zt . Steps 5 and 6 use the independence of xt
from zt−1 and xt+1..T from zt−1, and from each other, given zt . Note that
p(zt |zt−1) is given by azt ,zt−1 . In the next lecture, we will consider algo-
rithms to compute α(zt) and β(zt).


