
Scribe Notes: Multivariate Gaussians and PCA

Brenton Partridge

December 6, 2010

Contents

1 Overview 1

2 Multivariate Gaussian 1

2.1 Maximum Likelihood Estimate of MVG . . . . . . . . . . . . . . . . . . . . . 2

2.2 Decomposing a MVG distribution into multiple MVGs . . . . . . . . . . . . 3

3 Factor Analysis & PCA 4

3.1 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Reversing the Generative Process . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Conclusion 7

1 Overview

The idea of dimension reduction is to find a hyperplane in high-dimensional space such that
an objective function [of the data with respect to its projection on the hyperplane] is op-
timized. In certain cases, we can interpret the dimensions that are obtained; a case study
where this has worked is the ideal point model in voting. A commonly used method for di-
mension reduction is principal component analysis, or its more general form, factor analysis.
To develop this method, we will begin by specifying a distribution over p-vectors, then de-
scribe variables in a graphical model in terms of this distribution.

2 Multivariate Gaussian

A multivariate Gaussian distribution (MVG) is a distribution over p-vectors, which are vec-
tors of p real components (~x ∈ Rp). The distribution takes two parameters:
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1. ~µ ∈ Rp is the p× 1 mean vector such that µi = E[Xi].

2. Σ ∈ Rp×p is the p × p covariance matrix such that its elements are the covariances
σij , Cov(Xi, Xj). It has a few notable properties:

(a) σij = E[XiXj]− E[Xi]E[Xj]

(b) σii = E[X2
i ]− E[Xi]

2 , Var(Xi)

(c) Σ is positive definite and symmetric. Note1 that some of its elements can be
negative (implying negative correlation between component pairs), but the overall
matrix must be positive definite, meaning ~zTΣ~z > 0∀~z 6= ~0 ∈ Rp.

The pdf is:

p(~x|~µ,Σ) =
1

(2π)p/2 |Σ|1/2
exp

{
−1

2
(~x− ~µ)T Σ−1 (~x− ~µ)

}
(2.1)

where the fractional term in the beginning is a constant so the pdf integrates to 1 (note that
|Σ| is the determinant of Σ), and the exponent takes a quadratic form.

N.B. from recitation: The inverse covariance matrix Σ−1 (as in (x− µ)T Σ−1 (x− µ))
has the fascinating property that if (Σ−1)ij = 0 then Xi ⊥⊥ Xj| {Xk ∀ k 6= i, j};
they are conditionally independent given all other components. We can interpret
this as an undirected graphical model, where each component in the MVG is a
node, and Σ−1 is a weighted adjacency matrix such that an edge only exists if
(Σ−1)ij 6= 0.

Now consider the function in the exponent, f(~x) = −1
2

(~x− ~µ)T Σ−1 (~x− ~µ). This defines
contours of constant probability, such that if f(~x) is fixed, the values of ~x form an ellipse.
Cases for these ellipses are shown in Figure 1.

If all pairs of components in a multivariate Gaussian distribution are uncorrelated (i.e. Σ is
diagonal), then the components are independent.2

2.1 Maximum Likelihood Estimate of MVG

A new subscript notation is introduced, where n = 1..N represent replication of data, and
~xn ∈ Rp ∀n. Thus, D = {~xn}Nn=1, and the M.L.E. arg max~µ,Σ log

∏N
n=1 p(~xn|~µ,Σ) yields the

1This point was clarified midway through the lecture.
2Proof of this relationship was not provided in lecture, although it was discussed at length. E[XiXj ] =

E[Xi]E[Xj ] does not suffice because all other moments would need to agree. A proof may arise from the
sufficient statistics (meaning the proof would apply to the general exponential family), but this was not
confirmed.
Note that in general, although independence implies zero correlation, the reverse is not true. Consider

the case where X ∼ N (0, 1) and Y = XZ where Z is 1 with probability 1
2 and -1 with probability 1

2 . Then
Y ∼ N (0, 1) marginally, and Cov(X,Y ) = 0, but X and Y are clearly dependent. Such a case, though,
would be impossible in a multivariate (joint) Gaussian distribution, were [X,Y ] ∼ N2(~0, I). While not a
formal proof, this may shed some light on the subject.
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Figure 1: Contours of constant probability in the exponent of a bivariate Gaussian distribu-
tion.

(a) circles → Σ
diagonal, compo-
nents X ⊥⊥ Y are
uncorrelated

(b) X,Y are pos-
itively correlated,
σxy > 0

(c) X,Y are neg-
atively correlated,
σxy < 0

following:

µ̂ =
1

N

N∑
n=1

~xn (2.2)

Σ̂ =
1

N

N∑
n=1

(~xn − µ̂) (~xn − µ̂)T (2.3)

where Σ̂ can be interpreted as the average outer product of differences from the mean.

2.2 Decomposing a MVG distribution into multiple MVGs

We can divide ~x into 〈~x1, ~x2〉 elementwise (i.e. ~x1 = ~x[1..q] and ~x2 = ~x[q+1..p]). The parameters
can be decomposed accordingly, such that ~µ = 〈~µ1, ~µ2〉3 and Σ is the block matrix,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

Consider the joint distribution using the chain rule,

p(~x1, ~x2) = p(~x2)p(~x1|~x2).

The marginal p(~x2) is a MVG with:

~µ = ~µ2 (2.4)
Σ = Σ22 (2.5)

3For more about the significance of this decomposition, refer to the film
http://www.imdb.com/media/rm372218880/tt0190641.
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The conditional p(~x1|~x2) is a MVG with:

~µ = ~µ1 + Σ12Σ−1
22 (~x2 − ~µ2) (2.6)

Σ = Σ11 − Σ12Σ−1
22 Σ21 (2.7)

These results will be proved in the reading which will be sent out; note for now that the
dimensions agree. To generalize these results to exponential families, the results should be
available in Brown, L., Exponential Families.

3 Factor Analysis & PCA

To define a generative model for a single vector in p-space, we first choose q independent
components to form a vector in q-space:

~Z ∼ Nq
(
~0, I
)

Then, we generate a vector ~x ∈ Rp from these components:

~X|~Z ∼ Np
(
~µ+ Λ~Z,Ψ

)
Here, ~µ ∈ Rp,Λ ∈ Rp×q, ~Z ∈ Rq,Ψ ∈ Rp×p. Ψ, the covariance matrix, is a diagonal matrix
of noise/error amounts; since it is diagonal, the components have zero covariance. In PCA,
these Ψi along the diagonal must be the same for all components, such that Ψ = Iσ2 where
σ2 is a scalar variance value. However, in factor analysis, the Ψi can be different.

We now wish to generate N such vectors. For simplicity, we can assume (throughout the
rest of these notes) that the data is centered, that is, ~µ = 0 across the data points. This can
be ensured during pre-processing by finding the component-wise mean ~µ and subtracting it
from each datum, such that Dcentered = {~xn − ~µ}Nn=1. Then, we have:

~Zn ∼ Nq
(
~0, I
)

(3.1)

~Xn|~Zn ∼ Np
(

Λ~Zn,Ψ
)

(3.2)

This leads to the graphical model in Figure 2.

Note that the vector Λ~Z can be considered as a linear combination of the q columns ~λi of
Λ, where the coefficients are the scalar elements of ~Z:

E
[
~X|~Z

]
= Λ~Z = Z1

~λ1 + Z2
~λ2 + . . .+ Zq~λq (3.3)

Thus, some data points can use some factors more than others. The idea is that the ~λi’s
represent common sources of variation throughout the data.
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Figure 2: Graphical model for PCA and FA

Zn︸︷︷︸
coordinates of
projection into

q-space

Xn︸︷︷︸
high-dimensional

data in
p-space

N

Λ (transformation from q-space to p-space)

Ψ (defines error in p-space)

Figure 3: Projection from three dimensions onto principal components
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Xn
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Zn|Xn

q-space

3.1 Geometric Interpretation

In the graphical model in Figure 2, we consider {Xn} as data in a high-dimensional p-space,
and Λ defining a hyperplane (or subspace) of that p-space; the columns of Λ,

{
~λi ∈ Rp : i = 1..q

}
,

span the subspace. Thus, given a specific Λ, the projection of any point Xn onto the subspace
can be specified by a set of coordinates Zn, as per the linear combination shown in Equation
3.3. Figure 3 shows the process by which these coordinates would be determined, where
the circles represent a Bayesian view of the values. In this case, the distribution Zn|Xn is
centered on the closest point in the subspace to Xn.4

We can now geometrically interpret the generative model that would create the observed
variables {Xn}. For each of N iterations:

1. Draw a point from q-space based on the distribution ~Z, and transform it into p-space.
4Contrast this with regression, in which the closest point in the direction of an axis defined a priori is

used.
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Figure 4: Generating three-dimensional data from a PCA model

ΛZ

ΛZn
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2. In p-space, consider a “ball” of noise centered on that point, where points closer to
the center of the ball have a higher probability of occurring. The “size” of the ball is
determined by the elements of Ψ. For factor analysis in general, the ball may be any
ellipsoid whose axes are in the directions of the columns of Λ. For PCA specifically,
the ball is a sphere.

3. Draw Xn from that ball of noise in p-space.

Figure 4 shows this process graphically for PCA, with a spherical ball of noise. See the
Appendix for the code used to generate the figure.

3.2 Reversing the Generative Process

Our next goal is, given the generative process, to find a distribution or estimate on ~Z| ~X,
the posterior. We begin by expressing the joint distribution of 〈Z,X〉 as a (p + q)-variate
Gaussian with parameters:

~µ =

〈
~0︸︷︷︸

q-vector

, ~0︸︷︷︸
p-vector

〉
(3.4)

Σ =


Var(Z)︷︸︸︷
I

Cov(X,Z)︷︸︸︷
ΛT

Λ︸︷︷︸
Cov(Z,X)

(
ΛΛT + Ψ

)︸ ︷︷ ︸
Var(X)

 (3.5)
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We can now use the results from Section 2.2 to find p( ~X) and p(~Z, ~X) based on the dis-
tribution above. Plugging in Equations 3.4 and 3.5 to Equations 2.4, 2.5, 2.6, and 2.7, we
find:

~X ∼ Np
(
~0,ΛΛT + Ψ

)
(3.6)

~Z| ~X ∼ Nq
(

ΛT
(
ΛΛT + Ψ

)−1 ~X,
(
I + ΛTΨ−1Λ

)−1
)

(3.7)

4 Conclusion

Principal component analysis and factor analysis are powerful tools for reducing the dimen-
sionality of data. A generative graphical model for the data with an intuitive geometric
interpretation is described. Using properties of the multivariate Gaussian distribution, this
generative model can be reversed to find the posterior distribution of the hidden variables.
Having thus reversed the generative process, we will turn our attention to efficient methods
of computing the posterior, namely Expectation-Maximization, in future lectures.

Appendix A: Sketch Code for Figure 4

The following code for Sketch, a 3D graphics precompiler for LATEX available at
http://www.frontiernet.net/∼eugene.ressler/, was used to generate Figure 4.

def O (0,0,0) % origin
def ax (1,0,0)
def ay (0,1,0)
def az (0,0,1)

def circles {
def n_circle 50
repeat { 5, scale(0.7) }

sweep[cull=false]
{n_circle, rotate(360 / n_circle, (0,0,0), [0,0,1]) }
(0.25,0,0)

}

def redcircles {
def n_circle 50
repeat { 5, scale(0.7) }

sweep[cull=false,draw=red]
{n_circle, rotate(360 / n_circle, (0,0,0), [0,0,1]) }
(0.25,0,0)

}

def redsphere {
def n_circle 20 def n_sphere 20
sweep[draw=red,fill=none,draw opacity=0.10]

{n_sphere, rotate(-360/n_sphere, (O), [0,1,0])}
sweep {n_circle, rotate(180/n_circle, (O), [0,0,1])}

(0,1,0)
}

def redspheres {
repeat { 5, scale(0.7) } {redsphere}
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}

def pspace_plane {
%plane
polygon[style=dashed,fill=none](0,0,1)(1,0,1)(1,0,0)(0,0,0)
%special |\path #1 node[right] {$\leftarrow \Lambda$};|(1,.5,.5)

put { scale(2) then rotate(90, (O), [1,0,0])
then translate([0.5,0,0.5]) } {circles}

special |\path #1 node[above] {$\Lambda Z$};|(.5,.1,.5)

dots[style=ultra thick](.75,0,.75)
special |\path #1 node[below] {$\Lambda Z_n$};

|(.75,-.05,.75)

put { scale(0.25) then translate([0.75,0,0.75]) } {redspheres}

dots[fill=red,draw=red,style=ultra thick](.8,.15,.8)
special |\path #1 node[right,red] {$X_n$};|(.8,.15,.8)

}

def pspace {
%axes
line[arrows=<->] (ax)(O)(ay)
line[arrows=->] (O)(az)

put { rotate(5, (O), [1,0,1]) then translate([0,0.5,0]) } {pspace_plane}

special |\node at #1 {$p$-space};| (0.5,-0.25,0)
}

put { scale(1.5) then view((5,5,30)) then perspective(100) } {pspace}

def qspace {
%axes
line[arrows=<->] (ax)(O)(ay)

put { scale(2) then translate([0.5,0.5,0]) } {circles}
special |\path #1 node[right] {$Z$};|(1,0.5,0)

dots[style=ultra thick](.75,.75,0)
special |\path #1 node[right] {$Z_n$};|(.75,0.75,0)

special |\node at #1 {$q$-space};| (0.5,-0.25,0)
}

put { scale(4) then translate([-8,0,0]) } {qspace}

global { language tikz }
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