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Caleb Bastian

Continuation from previous lecture on Exponential families

p(x|ξ) = h(x)exp{ηᵀt(x)− a(η)}

where Xn ∼ p(x|η). Take Log, resulting in

log {p(X1:N |ξ)} =
N∑
n=1

[
log{h(Xn)}+ ηᵀ

(∑
n

t(Xn)

)
−Na(η)

]
.

Take derivative of both sides and set equal to zero,

∂l

∂η
=
∑
n

t(Xn)−N∇ηa(η) = 0,

so

∇ηa(η) =
1

N

∑
n

t(Xn),

which is the empirical average of the sufficient statistics, which is equivalent to

Eη̂{t(X)} =
1

N

∑
n

t(Xn).

Bayesian setting
- place a prior on the natural parameter
- compute the posterior given data X1:N

Conjugate Prior: a prior for which the posterior is in the same family. We previously saw
Gaussian/Gaussian (prior/likelihood) case.

Beta-Bernoulli Conjugacy:

Bernoulli Distribution: p(x|π) = πx(1− π)1−x, where x ∈ {0, 1}

Beta Distribution: p(π|α, β) = Γ(α+β)
Γ(α)Γ(β)

πα−1(1− π)β−1, where α > 0, β > 0, π ∈ (0, 1).
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Note the Gamma function Γ{} is the real-valued extension of the factorial function.

Some properties of the Beta distribution:
•E{π|α, β} = α

α+β

•can assume uniform, symmetric, and skewed distributions

So, defining our model via

π ∼ Beta(α, β)

Xn ∼ Bernoulli(π),

The Posterior distribution is:

p(π|X1:N) ∝ p(π)p(X1:N |π)

= p(π)
N∏
n=1

p(Xn|π)

=

(
Γ(α + β)

Γ(α)Γ(β)
πα−1(1− π)β−1

) N∏
n=1

πXn(1− π)1−Xn

∝ π
(α+

P
n
Xn−1)

(1− π)
(β+N−

P
n
Xn−1)

= Beta

(
α +

∑
n

Xn, β +N −
∑
n

Xn

)

Note that

E(π|X1:N) =

α +
∑
n

Xn

α + β +
∑
n

Xn +N −
∑
n

Xn

=

α +
∑
n

Xn

α + β +N

Conjugate Prior for Exponential Family

η ∼ Conj.(λ)
Xn ∼ Exponential family (η), n = 1, ..., N
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p(Xn|η) = h(x)exp

{
ηᵀt(x)− a(η)

}

• p(η|λ) = h(η)exp

{
λᵀ

1η + λ2(−a(η))− ac(λ)

}

(•) is the conjugate prior for the Exponential family. λ1 is a vector with the same dimension as η,
λ2 ∈ R, and ac is log-normalized.

In the conjugate prior, natural parameter: < λ1, λ2 >, where λ1 is dim(η) and λ2 ∈ R.

sufficient statistics are < η,−a(η) >

To confirm this,

p(η|X1:N) ∝ p(η|λ) ∗
N∏
n

p(Xn|η)

= h(η) ∗ exp
{
λᵀ

1η + λ2(−a(η))− ac(λ)

}
∗Nh(x)exp

{
ηᵀ
(∑

n

t(Xn)
)
−Na(η)

}
∝ h(η) ∗ exp

{(
λ1 +

∑
n

t(Xn)
)ᵀ
η + (λ2 +N)(−a(η))

}

This is the same form as the prior. So, the posterior is in the same family with

λ̂1 = λ1 +
∑
n

t(Xn)

λ̂2 = λ2 +N

other conjugates: (prior/likelihood)
Normal (on µ)-Inverse Wishart (on Σ) / Normal
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Dirichlet/Multinomial
Gamma/Poisson
Beta/Bernoulli

Generalized Linear Models

-Observed input X enters the model through a linear function:

ξ = βᵀX

-Conditional mean of the response y is a function of ξ

E (Y |X) , µ = f(βᵀX)

-Response Y is drawn from an exponential family with mean µ.

Diagram:

Ψ maps the mean to the natural parameter.
Usually, we work with an over-dispersed exponential family

p(y|η) = h(y, δ)exp

{
ηᵀy − a(η)

δ

}
Linear Regression:

p(Y |X) =
1√

2πσ2
exp

{
− 1

2σ2
(Y − βᵀX)2

}

=
1√

2πσ2
exp

{
−Y
2σ2

}
∗ exp

{
Y (βᵀX)− 1

2
(βᵀX)2

σ2

}
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where

δ = σ2

h(δ, Y ) = 1√
2πσ2

exp
{−Y

2σ2

}
η = βᵀX

a(η) = η2/2

Ψ: Identity

f : Identity

2 decisions to make to define model:
1. Choose the exponential family distribution of Y (this determines Ψ).
2. Choose the response function f (”link function”)

Canonical Response Function: f = Ψ−1.
Here, the linear function of X is the natural parameter. η = Xᵀβ. The only ”choice” we now have
is 1.
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