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1 Probabilistic generative process

Figure 1: Generative Model

In probability and statistics, a generative model is a model for randomly
generating observable data given some hidden variable parameters. It spec-
ifies a joint probability distribution over observed variables and hidden pa-
rameters. Figure 1 shows a graphical model representation of generating data
points from a mean variable.

1. µ ∼ N(µ0, τ
2) - generate µ from a prior µ0.
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2. Xn|µ ∼ N(µ, σ2) - generative process

We want to look at the posterior inference - p(µ|X1, ..., Xn)

We can estimate the hidden variable µ using maximum likelihood - µ̂ =
argmaxµ logp(X1, ..., Xn|µ)

2 Mixture Model

Mixture Model is a probabilistic model for density estimation using a mixture
distribution. This is another example of widely used generative process.

1. µk ∼ N(µ0, τ
2) for k = 1, ... , K. Where k is the indexing of component,

K is the total number of components.

Figure 2: Mixture Model

2. For each datapoint:

(a) Choose Zn ∼ Discrete(π) where π represents a uniform distribu-
tion over 1, ..., k.

(b) Choose Xn ∼ N (µZn , σ
2) as shown in Figure 2.

We are interested in p(µ2|X1, ..., Xn). However, we can see that all zi,
i ∈ {1, ..., n} are dependent on each other. Therefore, we will need
approximate inference to compute this.
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3 Regression

In some models, we always observe and condition on certain aspects of the
data. Our purpose is to maximize the conditional likelihood.

Figure 3: Regression

As shown in Figure 3, we have the following relationships:
The uncertainties on Yn is modeled though a Gaussian distribution.

Yn ∼ N (ηTxn, σ
2)

The parameter estimator is the one that maximum the likelihood of param-
eter η.

η̂ = argmax
η

∑
n

log p(yn|xn, η)

∵ p(η|X1:N , Y1:N) ∝ p(η)
∏
n

p(yn|xn, η)

N.B. When we condition on Xn, the model will be a discriminative model.

With X and Y representing different kind of data, we have different type
of regression. For example:

Xanything, Y continuous => linear regression

Xanything, Y categorical => soft−max regression
Xanything, Y binary => logistic regression
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Figure 4: Regression Model with new variable to predict

We are interested in per-data prediction, this is illustrated in Figure 4.
The frequentist view of predicting ynew is p(Ynew|Xnew, η̂) where η̂ is the

parameter estimator using maximum likelihood.
The bayesian way of predicting ynew is the following (the conditional

independencies can be obtained from the graphical model in Figure 4:

p(Ynew|Xnew,D) =

∫
p(Ynew, η|Xnew,D) dη

=

∫
p(Ynew, |η,Xnew,D)p(η|Xnew,D) dη

∵ Ynew ⊥⊥ D|η & η ⊥⊥ Xnew|φ ∴ =

∫
p(Ynew, |η,Xnew)p(η|D) dη

4 Ways of organizing models

In probabilistic modeling, there are several ways of organizing models:

1. Bayesian vs. Frequentist.

2. Discriminative vs. Generative.

(a) Discriminative: conditioned on some variables

(b) Generative: we fit a probability distribution to every part of the
data, e.g. clustering, naive Bayesian classification.
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3. Per-data point prediction vs. Data set density estimation.

4. Supervised vs. Unsupervised models.

(a) Supervised: given {(xi, yi)}Ni=1 in training, predict y given x in
testing (e.g. classification).

(b) Unsupervised: given data, we seek the structure of it. e.g. Clus-
tering

However, all of these boundaries are soft. All of these models involves
treat observations as random variables in a model. Solve our problem with
a probabilistic computation about the model.

5 Linear Regression

In this section, we will talk about the basic idea of linear regression and then
study how to fit a linear regression.

5.1 Overview

Figure 5: Linear regression. ’X’s are data points and the dashed line is the
output of fitting the linear regression.
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The goal of Linear regression is to predict a real value response form a set
of inputs ( or covariates). See Figure 5 shows an example. Usually, we have
multiple covariates Xn =< X1,n, X2,n, . . . , Xp,n >, where p is the number of
covariates, n is number of covariates.

In linear regression, we fit a linear function of covariates

f(x) = β0 +

p∑
i=1

βixi = β0 + βTx.

Note that in general βTx = 0 is a hyperplane.
Many candidate features can be used as the input x:

1. any raw numeric data;

2. any transformation, e.g. x2 = log x1 and x3 =
√
x1;

3. basis expansions, e.g. x2 = x21 and x3 = x31;

4. indicator functions of qualitative inputs, e.g. 1[the subject has brown hair];
and

5. interactions between other covariates, e.g. x3 = x1x2.

5.2 Fitting a linear regression

Suppose we have a dataset D = {(xn, yn)}Nn=1. In the simplest form of a
linear regression, we assume β0 = 0 and p = 1. So the function to be fitted
is just

f(x) = βx.

To fit a linear regression in this simplified setting, we minimize the sum of the
distances between fitted values and the truth. Thus, the objective function
is

RSS(β) =
1

2

N∑
n=1

(yn − βxn)2,

Thus we can estimate β like this.

β̂ = arg min
β

N∑
n=1

(yn − βxn)2
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