
LECTURE 7: STATISTICAL CONCEPTS (CONTINUED)

COS 513, FALL 2010
LECTURER: DAVID BLEI

SCRIBE: ANURADHA

Given n data points, X1, X2, . . . , Xn that are known to be drawn from a Gaussian dis-
tribution, how do we estimate the distribution? The Gaussian distribution is completely
parametrized by the mean and the variance of the distribution. If X is a random variable
with a Gaussian distribution then,

p(X|θ) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ2)

}

where µ and σ2 are the mean and the variance respectively and we call these parameters
θ , {µ, σ2}. Our problem is to estimate θ from the data X , X1:N .

Maximum Likelihood Estimation

The graphical model for this problem is -

θ

X1 X2

Xn

where the small black circle represents the parameter. This can be, more succinctly, rep-
resented by the plate model as -

From the Bayes Ball algorithm we know that given θ, the Xis are independent. Also,
the Xis are identically distributed. Hence, X1, X2, . . . , Xn are IID (independently and
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N

Xn

identically distributed).

p(X|θ) =
N∏
n=1

1√
2πσ2

exp

{
− 1

2σ2
(xn − µ2)

}

=
1(√

2πσ2
)N exp

{
− 1

2σ2

N∑
n=1

(xn − µ2)

}

To estimate θ, we interpret the likelihood function as a function of θ and maximise the log
likelihood (call it l(θ;x)) -

log p(X|θ) , l(θ;x) = − N

2
log 2π − N

2
log σ2 − 1

2σ2

N∑
n=1

(xn − µ)2

The Maximum likelihood estimate (MLE) of θ is the θ that optimizes l(θ;x)

∂l

∂µ
= − 1

2σ2

N∑
n=1

2(xn − µ)(−1)

=
1
σ2

N∑
n=1

(xn − µ)

Setting the derivative to 0 and solving for µ,

1
σ2

N∑
n=1

(xn − µ) = 0

µ̂ML =
1
N

N∑
n=1

xn
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The MLE of the mean of the Gaussian is just the mean of the data! Solving for σ2,

∂l

∂σ2
= − N

2σ2
+

1
2σ4

N∑
n=1

(xn − µ)2 = 0

σ̂2
MLE =

1
N

N∑
n=1

(xn − µ̂ML)2

which is just average squared distance of the data points from the sample mean.

Bayesian Computation

In the Bayesian case, the parameter is thought of as a random variable and we have the
following model,

θ
Xn

N

Suppose the variance σ2 is fixed, the posterior of the mean is

p(µ|x1:N ) ∝ p(µ,X)

∝ p(µ)p(X1:N |µ)

Modulo normalization, the posterior is the product of the prior distribution of µ and the
probability of the data under the Gaussian assumption. But what is the prior distribution
of µ? We can come up with several candidate distributions and even use the data for this
purpose. Here, we shall assume the prior to have a Gaussian distribution as well. When the
posterior and the prior distributions are from the same family of distributions, the prior
is called a conjugate prior. Let µ ∼ N(µ0, τ

2). Ideally we should treat the parameters
µ0 and τ2 as random variables and obtain their distribution. These parameters are called
hyperparameters. We could go up another level and put a prior on these hyperparameters
and continue for more levels. However, there is no good way to set these hyperparameters
and we simply assume µ0 and τ2 to be arbitrary constants. As we go higher up the
levels of hyperparameters of prior distributions, the influence of any assumption about
the hyperparameters on the inference decreases. We shall also see that as we have large
amounts of data, the influence of the hyperparameters diminishes.

We now have the following model : µ ∼ N(µ0, τ
2), Xi ∼ N(µ, σ2)
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θ
Xn

N

τ 2

µ0

σ2

p(µ) =
1√

2πτ2
exp

{
− 1

2τ2
(µ− µ0)2

}
p(X1:N |µ) =

1(√
2πσ2

)N exp
{
− 1

2σ2

N∑
n=1

(xn − µ2)

}

From the Bayes Ball rules, we know the Xis need not be independent. However, condi-
tioned on µ, they are independent and we can compute p(X1:N |µ). This gives the joint
probability

p(X,µ) =
1

(2πσ2)N/2
exp

{
− 1

2σ2

N∑
n=1

(xn − µ2)

}
1

(2πτ2)1/2
exp

{
− 1

2τ2
(µ− µ0)2

}
which on normalizing gives p(µ|x1:N ). Doing the algebra gives -

p(µ|x1:N ) =
1√

2πσ̃2
exp

{
− 1

2σ̃2
(µ− µ̃)2

}
where,

µ̃ =
N/σ2

N/σ2 + 1/τ2
x̄+

1/τ2

N/σ2 + 1/τ2
µ0

σ̃2 =
(
N

σ2
+

1
τ2

)−1

and x̄ is the sample mean.

We see that the posterior mean µ̃ is the weighted average of the sample mean and the prior
mean µ0 and µ̃ approaches µ̂ML as N approaches infinity. As we see more data, we rely
more on the data than the hyperparameters. Our estimate of the variance σ̃2 goes to 0
for large N . This matches the intuition that the uncertainty in the estimate of the mean
diminishes when we have more evidence.
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An aside : De Finetti’s theorem. Notice that p(X1:N |µ) was also computed in the
maximum likelihood estimate. There we thought of the Xis as IID while here we only
assume that they are independent conditioned on µ. It can be seen from the following
theorem that this is a much weaker assumption

Fact 1 (De Finetti’s Theorem). If X1, X2, . . . , Xn are exchangeable, then

p(X1, X2, . . . , Xn) =
∫
θ
p(θ)

∏
n

p(Xn|θ)dθ

Thus, if the random variables are exchangeable i.e if their distribution is invariant under
permutations then they are independent conditioned on a parameter random variable. So,
in the Bayesian approach to estimating µ, we only need the assumption that the Xis are
exchangeable meaning the order in which they come doesn’t matter.

Posterior inference may be hard

The posterior inference may be difficult to compute in general and we may have to settle
for an approximate inference. We now look at an example where inference is hard.

Consider a mixture model where the data points x1:N come from one of 2 Gaussians and
it is not known which Gaussian each data point comes from. We model the problem as -

π Zn

Xn

N

σ2

µk

K

Here, the data points come from one of K Gaussian distributions having means µ1:K and
variance σ2. Zn is a hidden variable which tells us which distribution, Xn is drawn from.
Zn has a multinomial distribution with parameter π where π is a fixed distribution over
{1, 2, . . . ,K}. Thus, Zn ∼ Mult(π) and Xn ∼ N(µZn , σ

2). If we put a prior on the µis
then inferring their posterior distribution is hard i.e computing p(µi|x1:N ) for any i ∈ [k]
is hard. Why? We shall see this in the next class.


