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1. INTRODUCTION

In the previous lecture, we discussed how a directed graphical model
represents a factorization of the joint p(x1, ..., xn) =

∏
i p(xi|xπi). By in-

specting this factorization, we were able to make some basic conditional in-
dependence statements about the model. However, the question of whether
there are other possible conditional independence statements remained. In
this lecture, we introduce the Bayes ball algorithm. It will let us find all
statements associated with a directed graphical model.

An important remark is that the lack of an independence statement does
not imply that the variables are dependent. It only means that they are not
necessarily independent.

2. BAYES BALL ALGORITHM

2.1. Three canonical graphs. In this section, we study the conditional in-
dependence statements associated with three very simple graphs. Knowl-
edge of these particular cases will enable us to build an algorithm for general
undirected graphs in the next subsection, the Bayes ball algorithm. At each
of the graphs, we are going to observe how the concepts of graph separabil-
ity and conditional independence are interconnected.

Our first graph is a small chain (Figure 1). It represents the factorization
p(x, y, z) = p(x)p(y|x)p(z|y). From this formula, we can see there is one
independence statement implied by this graph: X⊥Z|Y . This graph can
be seen as a ”past, present and future” chain. The intuition here is that the
future is independent of the past given the present. In fact, this is the only
statement implied by this graph.

FIGURE 1. A small chain graph.
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FIGURE 2. A small tree.

These results can be interpreted from a graph separability point of view.
Whenever node Y is given, we remove it from the graph. By removing
Y , we disconnect X and Z, i.e. there is no path connecting X and Z.
In this example, separability and conditional independence agree since X
and Z are independent given Y . However, if Y is not given, then we do
not remove it from the graph. In which case, X and Z are still connected.
This is consistent with the fact that X⊥Z in general is not a conditional
independence statement implied by the graph.

Our second graph is a small tree (Figure 2). It represents the factorization
p(x, y, z) = p(y)p(x|y)p(z|y). Once again, there is only one implied inde-
pendence statement: X⊥Z|Y . Y can be interpreted as a hidden variable.
In this example, X and Z may be dependent variables. However, once the
hidden variable Y is given, X and Z become independent.

As an example of this tree, we may consider the random variables amount
of gray hair G and shoe size S. In general, these variables are dependent,
since older people tend to have more gray hair and larger shoe size at the
same time. However, we can break this dependency once we condition on
the random variable ageA, the hidden cause of both shoe size and gray hair.
This means G⊥S|A, but G⊥S is not be true.

Once again the concept of separability and independence agree. When
we remove (condition on) Y in Figure 2, X and Z cannot reach each other
(they are independent).

In our final example, separability and independence no longer agree. This
is why we cannot simply use naive separability to determine independence
statements. In Figure 3, we see an inverse tree graphical model. It repre-
sents the factorization p(x, y, z) = p(x)p(z)p(y|x, z). It can be shown, as
is intuitive, that X⊥Z. In other words, X is marginally independent of Z.
However, the statement X⊥Z|Y is not necessarily true. In this example,
exactly when Y is kept in the graph, they are independent, even though X
and Z can reach each other.
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FIGURE 3. An inverse tree.

An example of this inverse tree situation occurs if we consider the fol-
lowing random variables: Bob’s watch is broken Z, Alice does not arrive
on time for lunch Y and Alice was abducted by aliens X . In this example,
X⊥Z means the fact that Bob’s watch is broken and whether Alice was or
not captured by aliens are completely independent events, as is intuitive.
However, given that Alice does not arrive on time, X and Z become depen-
dent. For example, assuming Alice late, if Bob discovers that his watch is
broken, it means Alice was probably not abducted by aliens.

This last example show that the concept of separation we are interested
in is different from naive graph separation. They agree on the first two
examples, but disagree on the inverse tree. Therefore, we define a new
concept of separation called d-separation. This will let us determine any
conditional independence statement in a graphical model.

2.2. Bayes ball algorithm. We can define d-separation from an algorith-
mic point of view, we shall call it the Bayes ball algorithm. This algorithm
let us determine if a conditional statement of the form E⊥F |G, where E,
F and G are sets of random variables, necessarily holds. It consists of the
following steps:

• Shade nodes that are being conditioned on.
• Place balls on one set of variables (either E or F ).
• If any ball can reach a member of the other set then they are not

conditionally independent, otherwise they are.
However, the propagation of the Bayes balls follows some specific rules.

In general, these rules tell you if a ball can go from node X through node
Y to node Z. To cover all the cases, we must consider different scenarios
according to whether edges are coming in or out of Y , either to X or Z. In
fact, all combinations fall in one of the three simpler graphs we have already
considered. We depic these three cases, now as separability rules, in Figures
4, 5 and 6. Both in the chain and tree cases, the Bayes ball can only pass
if Y is not conditioned on. The ball get blocked when conditioning on Y ,
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FIGURE 4. The rules in the chain case.

FIGURE 5. The rules in the tree case.

FIGURE 6. The rules in the inverse tree case.

as shown in Figures 4 and 5. The opposite happens when edges form an
inverse tree. The ball can only pass when Y is shaded, as shown in Figure
6.

Besides these previous cases, we must also consider some degenerate
cases (Figure 7) when the ball wants to go from X through Y back to X .
This rules can be designed by considering X and Z to be the same node
and applying the above presented rules. For example, Figure 7 shows the
degenerate inverse tree case, both X and Z (remember that Z is the same
as X here) point towards Y . In this case, if Y is shaded, it can bounce back
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FIGURE 7. The rules in degenerate case.

FIGURE 8. A ball trying to get from X1 to X6 cannot pass
through either X2 nor X3. This is because of the rule in the
case of the chain graph.

to X . If Y is not shaded, the ball stops at Y . In case the edge was oriented
from Y to X , we would be in the regular tree case and the inverse of the
above would happen.

Consider Figure 8 and let us use the Bayes ball algorithm to evaluate
some conditional independence statements. Is X1⊥X6|{X2, X3} true? If
we put a Bayes ball in X1 and it tries to reach X6 it must pass through
one shaded node. However, the configuration of edges around either X2

or X3 leads us to use the rule of the chain graph. As these nodes are
shaded, this means the ball cannot pass. As a consequence we can state
that X1⊥X6|{X2, X3}.

As another example, consider Figure 9. Is X2⊥X3|{X1, X6} implied
by the graph? The answer is no. Indeed, we can show a path between
X2 and X3. The ball starts at X2 and passes through X6 arriving at X5

using the inverse tree case. Next, it uses a simple chain path to get to X3.
SinceX2 andX3 are not separated we cannot make the above independence
statement.
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FIGURE 9. A ball can get from X2 to X3 first using the in-
verse tree case through X6 and then using the chain case.

3. CHARACTERIZATION OF UNDIRECTED GRAPHICAL MODELS

Now that we know how to find all the independence statements associated
with a graph, we can provide a new characterization of graphical models.
Consider two families of propability distributions.

• Those found by ranging over all possible selections of conditional
probability distributions associated with each node.
• All joint probability distribution that respect all conditional inde-

pendence statements implied by a directed graphical model using
d-separation.

The Hammersley-Clifford theorem states that these two families are the
same.

Up to this point, we have only considered directed graphical models.
However, it is also possible to work with undirected graphical models which
we consider next.

4. UNDIRECTED GRAPHICAL MODELS

An undirected graphical model is an undirected graph together with a set
of potential functions defined on cliques of the graph, i.e. a fully connected
subgraph. These potentials are real-valued positive functions and they de-
fine a joint distribution:

p(x) =
1

Z

∏
c∈C

ψc(xc)

The set C contains cliques of the graph and it must cover all random
variables and edges. Z is a normalizing constant, it ensures that p sums to
1 when ranging over all values of x.
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The concept of separation in undirected graphs is much simpler. Here
naive separation provides us with all necessary conditional independence
statements associated with the graph. It is not necessary to use d-separation.

Finally, it is important to remark that the set of joint distributions that can
be represented in an undirected graphical model is different than those from
the directed graphical model.

5. THE ELIMINATION ALGORITHM

In this section, our objective is presenting a general algorithm for com-
puting conditional and marginal probabilities. While, many algorithms ex-
ist for this problem, we start our study by the simplest one, known as the
Elimination Algorithm.

Let f be a node and E be a set of nodes not containing f . Let R be
the remaining nodes. In the probabilistic inference problem, we want to
calculate p(xf |xE). We can do it in three steps:

1) Compute marginal

p(xf , xE) =
∑
xR

p(xf , xE, xR)

2) Compute

p(xE) =
∑
xf

p(xf , xE)

3) Calculate the ratio

p(xf |xE) =
p(xf , xE)

p(xE)

Notice that calculating p(xE) by summing over xf is more efficient that
using the original joint distribution.


