The training error theorem for boosting

Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: \((x_1, y_1), \ldots, (x_N, y_N)\) where \(x_i \in X, y_i \in \{-1, +1\}\)

Initialize \(D_1(i) = 1/N\).

For \(t = 1, \ldots, T\):

- Train weak learner using training data weighted according to distribution \(D_t\).
- Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\).
- Measure “goodness” of \(h_t\) by its weighted error with respect to \(D_t\):
 \[
 \epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i] = \sum_{i : h_t(x_i) \neq y_i} D_t(i).
 \]

- Let \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).

- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
 \end{cases}
 \]
 where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right).
\]

Although the notation is different, this algorithm is the same as in R&N (Fig. 18.10 in the 2nd edition; Fig. 18.34 in the 3rd edition).

In this note, we prove the training error theorem, which states that the training error of \(H\) is at most

\[
\exp \left(-2 \sum_{t=1}^T \gamma_t^2 \right)
\]

where \(\epsilon_t = \frac{1}{2} - \gamma_t\).

We prove this in three steps.

Step 1: The first step is to show that

\[
D_{T+1}(i) = \frac{1}{N} \cdot \frac{\exp(-y_if(x_i))}{\prod_t Z_t}
\]

where

\[
f(x) = \sum_t \alpha_t h_t(x).
\]

Proof: Note that Eq. (1) can be rewritten as

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]
since y_i and $h_t(x_i)$ are both in $\{-1, +1\}$. Unwrapping this recurrence, we get that

$$D_{T+1}(i) = D_1(i) \cdot \frac{\exp(-\alpha_1 y_i h_1(x_i))}{Z_1} \cdots \frac{\exp(-\alpha_T y_i h_T(x_i))}{Z_T}$$

$$= \frac{1}{N} \cdot \frac{\exp(-y_i \sum_t \alpha_t h_t(x_i))}{\prod_t Z_t}$$

$$= \frac{1}{N} \cdot \frac{\exp(-y_i f(x_i))}{\prod_t Z_t}.$$

Step 2: Next, we show that the training error of the final classifier H is at most

$$\prod_{t=1}^T Z_t.$$

Proof:

Training Error(H) = \[
\frac{1}{N} \sum_i \begin{cases} 1 & \text{if } y_i \neq H(x_i) \\ 0 & \text{else} \end{cases} \quad \text{by definition of the training error}
\]

$$= \frac{1}{N} \sum_i \begin{cases} 1 & \text{if } y_i f(x_i) \leq 0 \\ 0 & \text{else} \end{cases} \quad \text{since } H(x) = \text{sign}(f(x)) \text{ and } y_i \in \{-1, +1\}$$

$$\leq \frac{1}{N} \sum_i \exp(-y_i f(x_i)) \quad \text{since } e^{-z} \geq 1 \text{ if } z \leq 0$$

$$= \sum_i D_{T+1}(i) \prod_t Z_t \quad \text{by Step 1 above}$$

$$= \prod_t Z_t \quad \text{since } D_{T+1} \text{ is a distribution}$$

Step 3: The last step is to compute Z_t.

We can compute this normalization constant as follows:

$$Z_t = \sum_i D_t(i) \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

$$= \sum_{i: h_t(x_i) = y_i} D_t(i)e^{-\alpha_t} + \sum_{i: h_t(x_i) \neq y_i} D_t(i)e^{\alpha_t}$$

$$= e^{-\alpha_t} \sum_{i: h_t(x_i) = y_i} D_t(i) + e^{\alpha_t} \sum_{i: h_t(x_i) \neq y_i} D_t(i)$$

$$= e^{-\alpha_t}(1 - \epsilon_t) + e^{\alpha_t}\epsilon_t \quad \text{by definition of } \epsilon_t$$

$$= 2\sqrt{\epsilon_t(1 - \epsilon_t)} \quad \text{by our choice of } \alpha_t \text{ (which was chosen to minimize this expression)}$$

$$= \sqrt{1 - 4\gamma_t^2} \quad \text{plugging in } \epsilon_t = \frac{1}{2} - \gamma_t$$

$$\leq e^{-2\gamma_t^2}. \quad \text{using } 1 + x \leq e^x \text{ for all real } x$$

Combining with Step 2 gives the claimed upper bound on the training error of H.

2