The training error theorem for boosting
Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: (z1,v1),...,(zN,yn) where z; € X, y; € {—1,+1}
Initialize Dy (i) = 1/N.

Fort=1,...,T:
e Train weak learner using training data weighted according to distribution D;.
e Get weak hypothesis by : X — {—1,+1}.
e Measure “goodness” of h; by its weighted error with respect to D;:
€ = Priop, [hi(z:) # yi] = Z Dy(3).
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where Z, is a normalization factor (chosen so that D, will be a distribution).

Output the final classifier:

H(z) = sign (i @tht(ac)> .
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Although the notation is different, this algorithm is the same as in R&N (Fig. 18.10 in
the 2nd edition; Fig. 18.34 in the 3rd edition).
In this note, we prove the training error theorem, which states that the training error of

H is at most .
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where ¢ = 3 — .
We prove this in three steps.

Step 1: The first step is to show that
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Proof: Note that Eq. (1) can be rewritten as
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since y; and hy(x;) are both in {—1,41}. Unwrapping this recurrence, we get that
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Step 2: Next, we show that the training error of the final classifier H is at most

Proof:
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Step 3: The last step is to compute Z;.
We can compute this normalization constant as follows:
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by definition of the training er-
ror

since H(x) = sign(f(z)) and
Y; € {—1, —f‘l}

since e * > 1if 2 <0
by Step 1 above

since Drp.q is a distribution

by definition of ¢;

by our choice of a; (which was
chosen to minimize this expres-
sion)

plugging in ¢ = 5 —

using 1 4+ x < e” for all real x

Combining with Step 2 gives the claimed upper bound on the training error of H.



