
The PAW
Architecture Reference

Manual

by David A. Penry
For ELE375/COS471B

Princeton University
26 November 2001

Last Update: 8 October 2003

1. Introduction

The PAW architecture is a simple architecture designed to be easy to implement in a
semester course using a minimum of hardware resources. It is derived from the Thumb
ISA from Advanced Risc Machines, Ltd.

This manual roughly follows the structure of the ARM Architecture Reference Manual
and is indebted to that document for many concepts and details of describing the
architecture.

2. Programmer's Model

2.1. Data types

PAW processors support the following data types

Byte 8 bits
Halfword 16 bits

� All data operations are performed on halfword quantities; bytes are only relevant for
loads and stores.

� Some instructions require "word" alignment. Word alignment is 32-bit alignment, but
words are never actually operated on directly.

� PAW instructions are exactly one halfword in size and are aligned on a two-byte
boundary.

When these types are described as unsigned, the N-bit data value represents an integer in
the range 0 to +2N-1, using normal binary format. When these types are described as
signed, the N-bit data value represents an integer in the range -2N-1 to +2N-1-1, using two's
complement format.

The low-order bit of a data type is always considered to be bit 0.

The memory byte ordering is little-endian; byte 0 contains the low-order 8 bits of the
halfword at address 0.

2.2. Registers

The PAW processor has a total of 17 registers:

� 16 general-purpose registers named R0-R15. These registers are 16 bits wide.

� 1 status register. This register is also 16 bits wide, but only 4 of the 16 bits need to

be implemented.

2.2.1. General purpose registers

The general-purpose registers R0-R15 can be split into three groups.

Registers R0-R7 are the low registers. These registers are fully general-purpose and can
be used wherever an instruction allows a general-purpose register.

Registers R8-R14 are the high registers. These register may only be used by a subset of
the instructions. R13 is normally used as a stack pointer and is also known as the SP.
R14 is normally used to store subroutine return addresses and is also known as the LP.
Note that these uses of R13 and R14 are by convention only; the architecture requires no
special use of them.

Register R15 holds the Program Counter, or PC. It can be used in place of one of the
high registers R8-R14. There are also instructions that implicitly read or write the
program counter. When the program counter is read, the value read is always the address
of the instruction reading the PC. When the program counter is written, the next
instruction executed after the writing instruction is the instruction at the new value of the
PC. In other words, writing to the PC causes a branch to occur. Note that whenever a
new value is written explicitly to the PC by an instruction, this value overrides/overwrites
the "PC+2" value which is normally written at program counter update.

2.2.2. Status registers

The Status Register contains the condition code flags. The format of the status register is
shown below:

The condition code flags are modified by comparison and some of the arithmetic and data
transfer instructions. See the individual instruction descriptions to determine which
instructions may modify a flag. Some instructions may modify only a subset of the flags.

2.2.2.1. The N flag

This flag is set to bit 15 of the result of the instruction. When the value is interpreted as a
two's complement value, then N=1 if the result is negative and N=0 if it is positive or
zero.

2.2.2.2. The Z flag

This flag is set to 1 if the result of the instruction is zero. It is set to 0 otherwise.

15 3 2 1 0

Unimplemented N Z C V

2.2.2.3. The C flag

This flag is set in one of three ways:

� For an addition instruction, C is set to 1 if the addition produced a carry (i.e.
an unsigned overflow) and to 0 otherwise.

� For a comparison instruction, C is set to 1 if the subtraction implied by the
comparison did not produce a borrow and 0 otherwise. This is equivalent to
saying that if the second operand were negated and added to the first operand,
there would be a carry out of the addition.

NOTE: This behavior is the same as that of ARM, but is different from that
of other architectures, such as SPARC.

� For a shift instruction, C is set to the last bit shifted out of the value.

2.2.2.4. The V flag

This flag is set only on addition and comparison instructions. It is set to 1 if signed
overflow occurred and 0 otherwise.

2.3. Exceptions and reset

On reset, a PAW processor sets the PC to 0 and begins execution from that address.

No exceptions of any kind are detected by a PAW processor.

2.4. Memory and memory-mapped I/O

2.4.1. Byte addressing

The PAW architecture uses a single, flat address space of 216 8-bit bytes. Byte addresses
are treated as unsigned numbers running from 0 to +216-1.

Address calculations are normally performed using ordinary integer instructions. This
means that they normally wrap around if they overflow or underflow the address space.
Essentially all address operations are taken modulo 216. Programs should not rely on this
behavior.

2.4.2. Instruction addressing

Programs should not rely on the sequential execution of the instruction at address 0x0000
after the instruction at address 0xfffe.

2.4.3. Half-word addressing

The address space is also regarded as consisting of 215 16-bit words, each of whose

address is halfword-aligned. Half-word-aligned means that the address is divisible by 2.

The results of an unaligned halfword-sized data access are unpredictable.

Halfwords are stored in little-endian byte order; Byte 0 contains the lower 8 bits of the
halfword at address 0.

The load and store halfword instructions enforce an additional alignment restriction: the
address must be 32-bit aligned (i.e. divisible by 4). As a result, it is not possible to use
these instructions to load or store the halfwords at addresses 2, 6, 10, etc. Two byte loads
or stores must be used instead

2.4.4. Memory-mapped I/O

The standard way to perform I/O functions on a PAW system is through memory-mapped
I/O. This uses special memory addresses which supply I/O functions when they are
loaded from or stored to.

Instruction fetches must not occur from memory-mapped I/O locations.

3. The PAW Instruction Set

3.1. Instruction set encoding
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 | 0 | 0 | 0 | OP=0-31 | <unu sed> |
 3 | 0 | 0 | 1 | OP=0-3| Rd | Imme diate8 | *
 4 | 0 | 1 | 0 | 0 | 0 | 0 | OP=0-15 | Rs | Rd | *
 5 | 0 | 1 | 0 | 0 | 0 | 1 | OP=0-3| H1| H2| Rs | Rd | *
 9 | 0 | 1 | 1 | B | L | Imm5 | Rb | Rd |
12 | 1 | 0 | 1 | 0 | SP| Rd | Imme diate8 |
16 | 1 | 1 | 0 | 1 | Cond | 8 Bit Br anch Offset |

* - These instructions affect the status register condition code flags.

� All immediates are unsigned except for the branch offset.

3.1.1. Format 0: Miscellaneous operations

OP=0 HALT. The <unused> field should be set to 0.

3.1.2. Format 3: immediate operations

OP=0 MOV Rd, #Immediate8
OP=1 CMP Rd, #Immediate8

3.1.3. Format 4: ALU operations (2 operand)

 <OP> Rd, Rs

OP= 0 1 2 3 4 5
 AND EOR ASR TST NEG CMP

3.1.4. Format 5: Hi register operations

OP=0 ADD Rd, Rs
OP=1 CMP Rd, Rs (H1 = H2 = 0 is undefined)
OP=2 MOV Rd, Rs

For each one, (H1=1 => Rd = 8..15, H2=1 => Rs = 8..15)

3.1.5. Format 9: Load/Store with immediate offset

 STR Rd, [Rb, #Imm5<<2] (L=0, B=0 - 0..124 immediate offset)
 LDR Rd, [Rb, #Imm5<<2] (L=1, B=0 - 0..124 immediate offset)

 STRB Rd, [Rb, #Imm5] (L=0, B=1 - 0..31 immediate offset)
 LDRB Rd, [Rb, #Imm5] (L=1, B=1 - 0..31 immediate offset)

3.1.6. Format 12: Load address

SP=0 ADD Rd, PC, #Immediate8<<2 (0..1020 immediate offset)

3.1.7. Format 16: Conditional branch

- Conditions listed later
- Branch range -256..+254 (offset shifted left by 1)

 B<CC> Label

3.2. Instruction types
In this section the instructions are classified by type.

3.2.1. Data processing instructions

These instructions are used to perform arithmetic and logical operations on registers and
to move data between registers. The instructions are:

� ADD add two operands

� AND - logically "AND" the operands

� ASR - arithmetic shift right of one operand by the value of the other

� CMP - compare two operands

� EOR - exclusive-or the operands

� MOV - move value from one register to another

� NEG - negate one operand

� TST - Perform a logical AND of the operands and set the condition codes

3.2.2. Load and store instructions

These instructions are used to move data from memory to registers and back. Data
movement can occur in either byte-size or halfword-size chunks. The instructions are:

� LDR - load a halfword to a register

� STR - store a halfword from a register

� LDRB - load a byte to a register.

� STRB - store a byte to a register.

3.2.3. Branch instructions

These instructions are used to alter the control flow of the program. Branches occur
based upon the values of the condition code flags in the Status Register. The branch
condition names are:

condition
code

encoding meaning Calculation

eq 0000 Equal Z=1

ne 0001 Not equal Z=0

cs 0010 Carry set/ unsigned
higher or same

C=1

cc 0011 Carry clear/ unsigned
lower

C=0

mi 0100 Minus/Negative N=1

pl 0101 Plus/Positive or zero N=0

vs 0110 Overflow V=1

vc 0111 No overflow V=0

hi 1000 Unsigned higher C= 1 && Z=0

ls 1001 Unsigned lower or same C = 0 || Z = 1

ge 1010 Signed >= (N==V)

lt 1011 Signed < (N != V)

gt 1100 Signed > Z=0 && (N==V)

le 1101 Signed <= Z=1 || (N!=V)

3.2.4. Miscellaneous instructions

There is one instruction in this class: the HALT instruction.

3.3. Instruction descriptions
Detailed descriptions of each instruction follow in alphabetical order. The instruction
operation is described in a C-like pseudocode which uses indentation instead of braces to
show statement nesting. The individual steps of the operation are defined as if they were
to occur sequentially. In other words, when one step modifies Rd and a later step sets the
N condition code to Rd[15], the new value of Rd is used to set the N condition code.
Hardware, of course, may perform the steps in parallel as long as the sequential meaning
of the steps is preserved

The notation [hb:lb] means bits hb to lb, inclusive of the register or intermediate result.

3.3.1. ADD(1)

This form of ADD adds the value of one register to the value of a second register and
stores the result in the first register. None, one, or both of the registers may be high
registers. This instruction sets the condition code flags based upon the result.

Syntax

ADD <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value and also the destination register.
It can be any of R0 to R15. The register number is encoded in the instruction in H1
(most significant bit) and Rd (remaining 3 bits).

� <Rs> specifies the register containing the second value. It can be any of R0 to R15.
The register number is encoded in the instruction in H2 (most significant bit) and Rs
(remaining 3 bits).

Operation

Rd = Rd + Rs

N Flag = Rd[15]

Z Flag = if (Rd == 0) then 1 else 0

C Flag = if (carry out) then 1 else 0

V flag = if (signed overflow) then 1 else 0

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 0 010 H11 H2 Rs Rd

3.3.2. ADD(2)

This form of ADD adds an unsigned immediate value to the PC and writes the resulting
PC-relative address to a destination register. The immediate value can be any multiple of
4 in the range 0 to 1020. The condition flags are not affected.

Syntax

ADD <Rd>, PC, #<Immediate8><<2

where:

� <Rd> specifies the destination register. It can be any of R0 to R7.

� PC indicates PC-relative addressing (note: R15 is also correct here)

� <Immediate8> Specifies an unsigned 8-bit immediate value that is shifted left by 2 and
added to the value of the PC.

Operation

Rd = (PC AND 0xFFFC) + (Immediate8 << 2)

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

001 0 Immediate8Rd1

3.3.3. AND

The AND (Logical AND) instruction performs a bitwise AND of the values in two
registers and stores the result in the first. The condition flags are updated based upon the
result.

Syntax

AND <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value and also the destination register.
It can be any of R0 to R7.

� <Rs> specifies the register containing the second value. It can be any of R0 to R7.

Operation

Rd = (Rd and Rs)

N Flag = Rd[15]

Z Flag = if (Rd == 0) then 1 else 0

C Flag = unaffected

V flag = unaffected

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 Rs Rd0 0 00

3.3.4. ASR

The ASR (Arithmetic Shift Right) instruction is used to provide the signed value of a
register divided by a variable power of 2. The condition flags are updated based upon the
result.

Syntax

ASR <Rd>, <Rs>

where:

� <Rd> specifies the register containing the value to be shifted and also the destination
register. It can be any of R0 to R7.

� <Rs> specifies the register containing the value of the shift amount. It can be any of
R0 to R7.

Operation

if Rs[7:0] == 0 then

C flag = unaffected

Rd = unaffected

else if Rs[7:0] < 16 then

C flag = Rd[Rs[7:0] - 1]

Rd = Rd >> Rs[7:0]

else

C flag = Rd[15]

if Rd[15] == 0 then

Rd = 0

else

Rd = 0xffff

N Flag = Rd[15]

Z Flag = if (Rd == 0) then 1 else 0

V flag = unaffected

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 Rs Rd0 00 1

3.3.5. B

The B (branch) instruction is used to provide a conditional branch to a target address.

Syntax

B<cond> <target address>

where:

� <cond> is the condition under which the instruction is executed. See the table in the
Branch Instructions section.

� <target_address> specifies the address to branch to. The branch target address is
calculated by:

1. Shifting the 8-bit signed offset field of the instruction left by one bit.

2. Sign-extending the result to 16 bits.

3. Adding this to the contents of the PC.

The instruction can therefore specify an offset of -256 to +254 bytes.

Operation

if condition true then

PC = PC + (sign extend (BranchOffset<<1))

else

PC = PC + 2 (as with any non-branch instruction)

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

01 BranchOffsetCond1 1

3.3.6. CMP(1)

This form of the CMP (Compare) compares a register with an 8-bit unsigned immediate
value. The condition flags are updated based upon the result of subtracting the immediate
value from the register

Syntax

CMP <Rd>, # <Immediate8>

where:

� <Rd> specifies the register for comparison. It can be any of R0 to R7.

� <Immediate8> specifies the unsigned 8-bit immediate value for comparison in the
range 0 to 255.

Operation

alu_out = Rd - Immediate8

N Flag = alu_out[15]

Z Flag = if (alu_out == 0) then 1 else 0

C Flag = if (borrow from last bit) then 0 else 1

V flag = if (signed overflow) then 1 else 0

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 010 Immediate8Rd1

3.3.7. CMP(2)

This form of the CMP (Compare) compares two register values. Both registers must be
low registers. The condition flags are updated based upon the result of subtracting the
second register from the first.

Syntax

CMP <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value. It can be any of R0 to R7.

� <Rs> specifies the register containing the second value. It can be any of R0 to R7.

Operation

alu_out = Rd - Rs

N Flag = alu_out[15]

Z Flag = if (alu_out == 0) then 1 else 0

C Flag = if (borrow from last bit) then 0 else 1

V flag = if (signed overflow) then 1 else 0

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 Rs Rd10 0 1

3.3.8. CMP(3)

This form of the CMP (Compare) compares two register values. One or both of the
register values is a high register. The condition flags are updated based upon the result of
subtracting the second register from the first.

Syntax

CMP <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value. It can be any of R0 to R15. The
register number is encoded in the instruction in H1 (most significant bit) and Rd
(remaining 3 bits).

� <Rs> specifies the register containing the second value. It can be any of R0 to R15.
The register number is encoded in the instruction in H2 (most significant bit) and Rs
(remaining 3 bits).

Operation

alu_out = Rd - Rs

N Flag = alu_out[15]

Z Flag = if (alu_out == 0) then 1 else 0

C Flag = if (borrow from last bit) then 0 else 1

V flag = if (signed overflow) then 1 else 0

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 H11 H2 Rs Rd1

3.3.9. EOR

The EOR (Logical Exclusive-Or) instruction performs a bitwise exclusive or of the values
in two registers and stores the result in the first. The condition flags are updated based
upon the result.

Syntax

EOR <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value and also the destination register.
It can be any of R0 to R7.

� <Rs> specifies the register containing the second value. It can be any of R0 to R7.

Operation

Rd = (Rd EOR Rs)

N Flag = Rd[15]

Z Flag = if (Rd == 0) then 1 else 0

C Flag = unaffected

V flag = unaffected

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 Rs Rd0 00 1

3.3.10. HALT

The HALT instruction causes the processor to cease fetching and executing instructions.

Syntax

HALT

Operation

Stop fetching and executing instructions.

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 000 0 00 0 0 0 0 0 0 0

3.3.11. LDR

The LDR instruction allows 16-bits of memory data to be loaded into a general-purpose
register. The condition code flags are not affected by this instruction.

The memory address must be divisible by 4. This implies that this instruction cannot be
used to load halfwords from the two upper-order bytes of words. Two LDRB instructions
must be used instead.

Syntax

LDR <Rd>, [<Rb>, # <Imm5> <<2]

where:

� <Rd> specifies the destination register. It can be any of R0 to R7.

� <Rb> specifies the register containing the base memory address. It can be any of R0 to
R7.

� <Imm5> specifies a five-bit unsigned immediate value to be multiplied by 4 and added
to the value of <Rb> to form the memory address. This yields an effective address
range from the value of <Rb> to the value of <Rb> + 124.

Operation

address = Rb + (Imm5 << 2)

if (address[1:0] == 0b00)

data = Memory[address+1] , Memory[address]

else

data = UNPREDICTABLE

Rd = data

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 010 Rb Rd1 1 Imm5

3.3.12. LDRB

The LDR instruction allows 8-bits of memory data to be loaded into a general-purpose
register. The byte is not sign-extended. The condition code flags are not affected by this
instruction.

Syntax

LDRB <Rd>, [<Rb>, # <Imm5>]

where:

� <Rd> specifies the destination register. It can be any of R0 to R7.

� <Rb> specifies the register containing the base memory address. It can be any of R0 to
R7.

� <Imm5> specifies a five-bit unsigned immediate value in the range 0 to 31 to be added
to the value of <Rb> to form the memory address.

Operation

address = Rb + (Imm5)

Rd = Memory[address]

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 10 Rb Rd1 1 Imm51

3.3.13. MOV(1)

This form of the MOV(Move) moves an 8-bit unsigned immediate value into a register.
The condition flags are updated based upon the result.

Syntax

MOV <Rd>, # <Immediate8>

where:

� <Rd> specifies the destination register. It can be any of R0 to R7.

� <Immediate8> specifies the unsigned 8-bit immediate value in the range 0 to 255.

Operation

Rd = Immediate8

N Flag = 0

Z Flag = if (Rd == 0) then 1 else 0

C Flag = unaffected

V flag = unaffected

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 010 Immediate8Rd

3.3.14. MOV(2)

This form of MOV IMove) moves the value of the second register into the first register.
None, one, or both of the registers may be high registers. This instruction sets the
condition code flags based upon the result.

Syntax

MOV <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value and also the destination register.
It can be any of R0 to R15. The register number is encoded in the instruction in H1
(most significant bit) and Rd (remaining 3 bits).

� <Rs> specifies the register containing the second value. It can be any of R0 to R15.
The register number is encoded in the instruction in H2 (most significant bit) and Rs
(remaining 3 bits).

Operation

Rd = Rs

N Flag = Rd[15]

Z Flag = if (Rd == 0) then 1 else 0

C Flag = unaffected

V flag = unaffected

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 H11 H2 Rs Rd1

3.3.15. NEG

The NEG (Negates) instruction negates the value of one register and stores the result in a
second register. The condition flags are updated based upon the result.

Syntax

NEG <Rd>, <Rs>

where:

� <Rd> specifies the destination register. It can be any of R0 to R7.

� <Rs> specifies the register containing the value. It can be any of R0 to R7.

Operation

Rd = 0 - Rs

N Flag = Rd[15]

Z Flag = if (Rd == 0) then 1 else 0

C Flag = if (borrowed from last bit in 0-Rs) then 0 else 1.

V flag = if (signed overflow in 0-Rs) then 1 else 0.

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 Rs Rd0 0 01

3.3.16. STR

The STR instruction allows 16-bits of data to be stored to memory from a general-
purpose register. The condition code flags are not affected by this instruction.

The memory address must be divisible by 4. This implies that this instruction cannot be
used to store halfwords into the two upper-order bytes of words. Two STRB instructions
must be used instead.

Syntax

STR <Rd>, [<Rb>, # <Imm5> <<2]

where:

� <Rd> specifies the register containing the data to store. It can be any of R0 to R7.

� <Rb> specifies the register containing the base memory address. It can be any of R0 to
R7.

� <Imm5> specifies a five-bit unsigned immediate value to be multiplied by 4 and added
to the value of <Rb> to form the memory address. This yields an effective address
range from the value of <Rb> to the value of <Rb> + 124.

Operation

address = Rb + (Imm5 << 2)

if (address[1:0] == 0b00)

Memory[address+1]= Rd[15:8]

Memory[address] = Rd[7:0]

else

Memory[address+1] = UNPREDICTABLE

Memory[address] = UNPREDICTABLE

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 10 Rb Rd1 Imm500

3.3.17. STRB

The STR instruction allows 8-bits of data to be stored to memory from a general-purpose
register. The byte is not sign-extended. The condition code flags are not affected by this
instruction.

Syntax

STRB <Rd>, [<Rb>, # <Imm5>]

where:

� <Rd> specifies the register containing the data to be stored. It can be any of R0 to R7.

� <Rb> specifies the register containing the base memory address. It can be any of R0 to
R7.

� <Imm5> specifies a five-bit unsigned immediate value in the range 0 to 31 to be added
to the value of <Rb> to form the memory address.

Operation

address = Rb + (Imm5)

Memory[address] = Rd[7:0]

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 10 Rb Rd1 Imm51 0

3.3.18. TST

The TST (Test) instruction performs a bitwise AND of the values in two registers and
updates the condition code flags based upon the result. It does not affect the value of
either register. A very common use of TST is to determine whether a single bit is set or
clear.

Syntax

TST <Rd>, <Rs>

where:

� <Rd> specifies the register containing the first value. It can be any of R0 to R7.

� <Rs> specifies the register containing the second value. It can be any of R0 to R7.

Operation

alu_out = (Rd and Rs)

N Flag = alu_out[15]

Z Flag = if (alu_out == 0) then 1 else 0

C Flag = unaffected

V flag = unaffected

15 3 2 1 014 13 12 11 10 9 8 7 6 5 4

0 0 0 0 010 Rs Rd0 0 1 1

