
ELE 375/COS471
Princeton University
Fall 2010
Lecturer: Douglas Clark
TA: Feng Liu

Project 1: PAW Functional and Cycle-Accurate Architectural Simulator in C
1st milestone: October 22rd 2010
2nd milestone: December 10th 2010
Final deliverables: January 10thth 2011 (Dean’s Date)

Overview

This project involves two parts, both to be written in C. You may work with one partner
from the class.

The first part entails writing a C language program which will read a binary file, interpret
the bits in that file as instructions for the PAW instruction set (described more below and
in a separate handout), and simulate the execution of those instructions. Such a program
is called a functional simulator.

The second part requires extending this functional simulator to one that faithfully
captures the execution time of a program (the same binary file with instructions from the
PAW instruction set) in a pipelined processor. Such a program is called a cycle-accurate
simulator.

The PAW instruction set (an ARM subset)

It is not uncommon for companies to develop extensions to or subsets of instruction set
architectures. For example, the x86 instruction set architecture was modified in the
1980's to allow wider registers. In other cases, the extensions reflect changes in expected
application types or implementations. For example, the ARM instruction set (used by the
processors in many PDAs) has a commercially available variant called “Thumb” that
specifies a 16-bit encoding of instructions. This 16-bit Thumb variant is commercially
useful because it is aimed at embedded systems where small code size is important (due
to memory cost) and because narrower instructions help reduce the number of pins
required on the CPU package.

You will be using PAW, our own subset of Thumb. The PAW instruction set
architecture is described in The PAW Architecture Reference Manual, available on the
course website. Read this manual thoroughly!

Building a Functional Simulator

The basic idea of a functional simulator is to execute repeatedly a loop in which
instructions are “fetched” by reading them from a simulated memory, then decoded and
executed.

The instruction decode portion of the simulator discerns the instruction type and relevant
fields and values from the binary encoding of the instructions. Once the simulator has
decoded an instruction, the simulator reads input, sets output, or modifies state as
“instructed” to do so by the instruction.

All of the state should be mimicked by having appropriate program variables. For
example, a bank of general purpose registers could be simulated using an array of
integers (if the integers on the system the simulator is running on are as wide as or wider
than the registers of the simulated processor):
 unsigned int GeneralRegs[NUMREGS];

Likewise, memory for an instruction set with a small address space can also be an array:
 unsigned char Memory[MEMSIZE];
(why wouldn't you want to do this for a large (say greater than a few megabyte) address
space?)

Simulate the full PAW instruction set as documented. Start your work by implementing
the HALT instruction first. As you add instructions, write test cases (in PAW assembly)
for those instructions. You will find this useful for debugging.

A possible (not the only) outline of your program would be:

Read bytes of a binary file into an array in memory
Point the program counter to the first instruction
while (TRUE) {

Read instruction from the array at the place pointed to by
the PC

 Determine the instruction type
 Get the operands
 switch (instruction type) {
 case HALT:
 print registers
 exit(0);
 case INSTR1:

Perform operation and update destination
register/memory/PC

 break;
 ...
 default:
 fprintf(stderr,”Illegal operation...”);
 exit(1);
 }
}

Warning: since the file you'll be reading from is a form of binary file, not a text file, do
not treat it as a text file. In other words, scanf is not the proper function to use....

 The above should be done by the first milestone

Building a Cycle-Accurate Architectural Simulator

The P&H text, Chapter 4, sections 4.5 through 4.8 explains pipelining for a MIPS-based
ISA, so part of your task is to adapt that information for PAW. Build your simulator in
three stages:

1. Build a trivial pipeline. Add pipeline registers, and execute with just 1 instruction
in the pipeline at a time. You can do this by inserting four NOP instructions after
each actual instruction. Feel free to reuse code from your functional simulator.

 The above should be done by the second milestone

2. Add stalling. Now allow multiple instructions, but whenever there is dependence,

just stall the pipeline for an appropriate number of cycles.
3. Add remaining hazards. Make a table of the kinds of dependencies and conditions

between overlapped instructions in your pipeline. Assume branch not-taken.
Model all of the pipeline cases in your simulator.

The program organization is similar to that of the functional simulator. The following
sketches one possible approach. As before, use a set of variables representing the state of
the processor, but group the variables for pipeline registers structs, one per pipeline stage.
The simulation is driven by a while loop, whose iterations correspond with clock cycles.

struct Fetch {
 unsigned pc;
};
struct Fetch F, F_next;
// ... Additional global data structures for each stage
// ... Register file and memories, as in functional simulator

// Simulation driver
while (cycle < cycle_max && !halt) {
 fetch ();
 decode ();
 // ... More function calls
 update (); // Update states being modeled
 print ();
}

Program I/O for Both Simulators

Both simulators have a similar user interface. The command-line flag “-i”indicates the
name of the binary file to be executed. The flag “-o” indicates the output file; if the user
does not specify this, the simulator should output to stdout.

sim_ca -i prog.bin -o output.txt

When the HALT instruction is executed, the simulators output the final instruction

address (pc) and the contents of the register file. Both simulators also output the number
of instructions executed (number of dynamic instructions). Additionally, the cycle-
accurate simulator outputs the number of clock cycles elapsed.

// Output: states
pc 0x000a200c
R[0] 0x00000000
R[1] 0x00000017
// ... And so on

// Output: stats
1263 instructions // Instructions executed
78462 cycles // Cycle time for CA-simulator

Trace File for Cycle-Accurate Simulator

To help with debugging, generate a trace of the pipeline activity as your program is
executed:

sim_ca -p trace.txt -i prog.bin

The output trace.txt should describe in each cycle the state of the pipeline registers
and any updated entries to the register file or data memory. Print instruction codes with
their abbreviated names, register file indices in decimal, and addresses and data in
hexadecimal. The following is an example syntax.

// ISA pipeline trace

0 // Initial architectural state:
// address new value
M[0x000030a4] 0xff003030
M[0x000030a8] 0xff003030

1 // Cycle #1
// A. Pipeline status: state of all pipeline registers
F // Fetch stage
 inst B // name of instruction as per the PAW ISA
 pc 0x00013000 // Addresses in hex
D
 inst MOV
 pc 0x00013f06
X
 inst ADD
 pc 0x00013f02
 op1 0x0000001a 26 // Feel free to use the rest of the line
 // to print other info, such as the decimal
 // representation of a data value.
M
 inst LDR
 pc 0x00013efe
W
 inst NOP // Pipeline bubble
// B. Updated architectural state: locations storing new values

// address new value
M[0x000830a4] 0xff003030 // Data memory
M[0x000830a8] 0xff003030
R[7] 0xff003030 // Register file

2 // Cycle #2
F
 inst ADD // ... and so on

Feel free to add extra command-line options, for example “-n <k>” to drop everything
but the last k cycles of the computation, when dealing with test cases that run for long
cycles.

Design Verification

How do you go about showing that your simulators are correct?

1. Use the cycle-accurate simulator to demonstrate some pipeline behaviors of
interest: speculation, hazards, dependences. Briefly explain what is going on in
your examples.

2. Simulation equivalence. You can use your functional simulator to check the
correctness of your pipelined simulator. Thinking of the cycle-accurate simulator
as a refinement of the functional simulator, we’re interested in seeing if the final
states (pc, register file, data memory) match.up. Use some tests provided in the
~ee375 project directory, as well as your own tests. So your experiments can be
replicated in grading, be sure to include the exact command-line calls you made.
NOTE: Test cases may be found in ~ee375/simulator_validation.s

3. Briefly explain your testing method.

Mechanics

• Your simulator must work on the OIT hats cluster.
• Your simulator should be written in C. The compiler gcc will be used for grading.
• Use one source file for each simulator, e.g. funcsim.c and cyclesim.c.

Tools and Sample Inputs

To complete this project, you will need to use tools found on the OIT hats cluster to
prepare PAW binary files. The tools are described in full in the PAW Binutils
Documentation on the class website. A quick summary is given here:

• paw-as The PAW assembler, converts assembly code to object files.
• paw-ld The PAW linker, joins together object files.
• paw-objcopy Translates object files to binary files.

Something must be pointed out about binary files. As mentioned in class, the files you
usually think of as “executable” files typically contain more information than just the

instructions and program data; they usually contain headers describing the program and
the structure of the binary file and symbol tables for the debugger. They often are
partitioned into sections so that non-contiguous portions of memory can be efficiently
defined by the program. Such files are sometimes called binary files, but the tool set
which we use calls them “object” files. Because all of this extra information is rather
difficult to parse, we use paw-objcopy to strip all that out and just form a “flat” image
of what memory should look like as the program begins execution. This is what we call a
“binary” file for the projects.

See some sample PAW assembly and binary files in:
• ~ee375/public/share/samplepaw on the OIT hats cluster

Deliverables

1. 1st Milestone (Due: October 22nd 2010)

Fully working functional simulator, executing all of the instructions correctly.

You must turn in the funcsim.c file which you have written. It must compile properly
on the hats cluster using:
 gcc -g -o funcsim funcsim.c
If we cannot compile your source file, we cannot grade your assignment!

Turn in your C program by submitting your work <we’re not sure exactly how yet>.

2. 2nd Milestone (Due: December 100h 2010)

Build a cycle-accurate timing model for a trivial pipeline.

Add pipeline registers, and execute with just 1 instruction in the pipeline at a time. You
can do this by inserting four NOP instructions after each actual instruction. Feel free to
reuse code from your functional simulator.

You must turn in the cyclesim.c file which you have written. It must compile properly
on the hats cluster using:
 gcc -g -o cyclesim cyclesim.c
If we cannot compile your source file, we cannot grade your assignment!

Turn in your C program by submitting your work as directed above.

3. Final Milestone (Due: Dean’s Date January 10th 2011)

There are three deliverables:

a) Functional simulator, executing all of the instructions correctly.

b) Cycle-accurate simulator, executing ALL the instructions correctly. Additionally, the
cycle count should match your specific processor pipeline.

c) Written report.

1) Pipeline design. Describe your specific processor pipeline that you designed for
the PAW instruction set. Describe the operation of each pipeline stage, and the timing of
each instruction as it progress through the stages. This should be 1-2 pages and brief.

2) Quantitative graph. Using data collected from your simulators, what is the
speedup of your pipelined versus a single-cycled implementation of the PAW ISA?

As before, turn in your project the same way.

Grading

Grading will consist mainly of running test PAW binaries (not necessarily the sample
binaries we give you) through your simulator. These test binaries will thoroughly test the
operation of instructions. Particular attention will be paid to “corner cases”. After the
mid-point milestone, you will get back a “score sheet” indicating what instructions had
problems and what kinds of problems. Be sure to fix these problems by the second and
final milestones.

The cycle-accurate simulator will similarly be tested by running various test PAW
binaries and verifying that the cycle count is faithful to the pipeline design.

We will also look at your source code to determine whether instructions and timing are
implemented correctly. Thus, be sure to write clear, commented code. Code which is
difficult for us to understand (i.e. uncommented or incorrectly commented) will lose
some points.

Acknowledgements

Much of the text of this document comes from earlier years’ ELE375 versions written by
Profs August, Martonosi, Wolf and TA David Penry.

