Simulation

COS 323
Simulation

One program variable for each element in the system being simulated,

... as opposed to

- analytical solution
- formulation of algebraic or differential eqs.
Approaches to Simulation

• Differential equation solvers can be thought of as conducting a *simulation* of a physical system
 – Advance through time
 – “Continuous” equations model change in state

• Some simulations are more “discrete”:
 – Boolean decisions at points in time
Bank Teller

• Simple example: lines at the bank
 – Customers arrive at random times
 – Wait in line(s) until teller available
 – Conduct transaction of random length
Bank Teller

• Simple example: lines at the bank
 – Customers arrive at random times
 – Wait in line(s) until teller available
 – Conduct transaction of random length

• Simulate arbitrary phenomena
 (e.g. spike in customer rate during lunch)

• Goal: mean and variance of waiting times
 – As a function of customer rate, # tellers, # queues
Bank Teller

- *Time-driven* simulation:
 - Fixed-length time steps
 - Can compute probability of customer(s) arriving, transactions finishing
 - More accurate simulation with shorter time steps, but then have more steps when *nothing* happens
• *Event-driven* simulation:

 – Variable-length time steps

 – Store sorted list of “events” (customer arrival, transaction finishing)

 – Repeatedly process one event, then fast-forward until scheduled time of next event

 – Good accuracy and efficiency: automatically use time steps appropriate for how much is happening
Time-Driven Simulation: Epidemics

- Discrete-time, discrete-space, discrete-state
Durrett’s Epidemic Model

- **Time**, \(t = 0, 1, 2, \ldots \)
- **Space**: orthogonal (square) grid
- **State**: \{susceptible, infected, removed\}

Rules tell us how to get from \(t \) to \(t+1 \) for each spatial location

Each site has 4 neighbors, contains 0 or 1 individual
Durrett’s Rules ("SIR" Model)

- **Susceptible** individuals become infected at rate proportional to the number of infected neighbors.
- **Infected** individuals become healthy (removed) at a fixed rate δ.
- **Removed** individuals become susceptible at a fixed rate α.
Time, \(t = 0, 1, 2, \ldots \)

Space: orthogonal (square) grid

State: \{susceptible, infected, removed\}
Simulation Results

\[\alpha = 0 : \] No return from removed; immunity is permanent. If \(\delta \), recovery rate, is large, epidemic dies out. If \(\delta \) is less than some critical number, the epidemic spreads *linearly* and approaches a *fixed shape*.

\[\Rightarrow \] Can be formulated and proven as a theorem!

\[\alpha > 0 : \] behavior is more complicated
Empirical Verification

• measles in Glasgow, 1929: 440 ft/week
• Muskrats escape in Bohemia, 1905: square-root of area grows linearly
More recent work:

Note ring of vaccinated individuals.
Event-Driven Simulation

- Applications:
 - Traffic during rush hour: effect of different algorithms for controlling traffic lights
 - Load on web server: effect of more machines, scheduling algorithms, etc.
Event-Driven Simulation

- Applications:
 - Circuit/chip simulation: clock rate needed for reliable operation

Events:
- Input: \(b(1) = 1 \)
- Output: \(c(3) = 0 \)
Event-Driven Simulation

- Applications:
 - Circuit/chip simulation: clock rate needed for reliable operation
Event-Driven Simulation

• Applications:
 – Multiple code fragments running in parallel, responding to user controls: computer music (e.g., PLOrk)

```plaintext
// global gain
gain g => dac;
// set gain
.5 => g.gain;

110.0 => float freq;
6 => int x;

// loop
while( x > 0 )
{
  // connect to gain
  sinosc s => g;
  // change frequency
  freq => s.freq;
  freq * 2.0 => freq;
  // decrement x
  1 => x;

  // advance time by 1 second
  1::second => now;
  // disconnect the sinosc
  s <= g;
}
```
Ingredients of Event-Driven Simulations

• Event queue
 – Holds (time, event) tuples
 – Priority queue data structure: supports fast query of event with lowest time
 – Possible implementation: linked list
 O(n) insertion, O(1) query, O(1) deletion
 – Possible implementation: heap, binary tree
 O(log n) insertion, O(1) query, O(log n) deletion
Ingredients of Event-Driven Simulations

- **Event loop**
 - Pull lowest-time event off event queue
 - Process event
 - Decode what type of event
 - Run appropriate code
 - (Compile statistics)
 - Insert any new events onto queue
 - Repeat.
Ingredients of Event-Driven Simulations

• How are new events scheduled?
 – Some are a direct result of current event. Example: when teller finishes a transaction, takes next customer and schedules new transaction completion event
 – Some are background events. Example: new customer arrives
 – Some are generated via real-time user input
Using Random Numbers

- Simulation: accounts for uncertainty: biology (large number of individuals), physics (large number of particles, quantum mechanics), human behavior, etc.
- Testing (large number of cases)
- Monte Carlo evaluation
- Run experiments with humans
Sources of “Randomness”

• “Analog Chaos”: Unknown initial conditions. Examples: roulette wheel, dice, card shuffle, analog slot machines.

• “Truly random”: Quantum mechanics. Examples: some computer hardware-based RNGs
“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.”

--- John von Neumann (1951)
What Did von Neumann Mean?

- Distinguish between “random” and “pseudorandom”
- Big advantage of pseudorandom: repeatability
- Big disadvantage: not really random
Linear Congruential Generator

- Most common and popular --- simple, fast, pretty good most of the time

\[X = aX_{n-1} + c \pmod{M} \]

\[X_n / M \quad \text{approx. unif. distr. in } [0,1) \]

\[X_n / (M - 1) \quad \text{approx. unif. distr. in } [0,1] \]
Choosing Good a, c, M

• Maximal period is M
 – Get all the integers in $\{0, 1, ..., (M-1)\}$ in some order before repetition, then periodic

• Achieved if and only if:
 – $\gcd(c, M) = 1$
 – $a-1$ divisible by all prime factors of M
 – if M is a multiple of 4, so is $a-1$

• That’s not all to the story: consecutive numbers clustered in small # of hyperplanes
Using RNGs

How would you…

• Choose an integer \(i \) between 1 and \(N \) randomly
• Choose from a discrete probability distribution; example: \(p(\text{heads}) = 0.4, p(\text{tails}) = 0.6 \)
• Pick a random point in 2-D: square, circle
• Shuffle a deck of cards
Bank Simulation: Scheduling Arrival Events

• Given time of last customer arrival, how to generate time of next arrival?

• Assume arrival rate is uniform over time: \(k \) customers per hour

• Then in any interval of length \(\Delta t \), expected number of arrivals is \(k \Delta t \)
Scheduling Arrival Events

- **Probability distribution for next arrival?**
 - Equal to probability that there are no arrivals before time t
 - Subdivide into intervals of length Δt

$$p(\text{no arrivals before } t) = p(\text{no arrival between } 0 \text{ and } \Delta t) \times p(\text{no arrival between } \Delta t \text{ and } 2\Delta t) \times \ldots$$
Scheduling Arrival Events

- $p(\text{no arrival in interval}) = 1 - k \Delta t$

- So, $p(\text{no arrivals before } t) = \lim_{\Delta t \to 0} \left(1 - k \Delta t\right)^\frac{t}{\Delta t} = e^{-kt}$
Scheduling Arrival Events

- Normalize, integrate, invert: time to next arrival event can be found from uniform random variable $\xi \in [0..1]$ via

$$t = -\frac{\ln \xi}{k}$$
Ingredients of Event-Driven Simulations

• How are events handled?
 – Need to run different piece of code depending on type of event
 – Code needs access to data: which teller? which customer?
 – Original motivation for Object-Oriented Programming languages: encapsulate data and code having a particular interface
 – First OO language: Simula (developed in 1960s)
Summary

• Insert events onto queue
• Repeatedly pull them off head of queue
 – Decode
 – Process
 – Add new events
Simulating population genetics
(assignment 5)

• review of basic genetics: genes, alleles

• If there are two possible alleles at one site, say A and a, there are in a diploid organism three possible genotypes: AA, aa, Aa, the first two homozygotes, the last heterozygote

• Question: How are these distributed in a population as functions of time?
Why study this?

- Understanding history of evolution, human migration, human diversity
- Understanding relationship between species
- Understanding propagation of genetic diseases
- Agriculture
Approaches, pros and cons

- **Field experiment**
 + realistic
 - hard work for one particular situation

- **Mathematical model**
 + can yields lots of insight, intuition
 - usually uses very simplified models
 - not always tractable

- **Simulation**
 + very flexible
 + works when math doesn’t
 - not easy to make predictions
19th Century: Darwin et al. didn’t know about genes, etc., and used the idea of *blended inheritance*

→ But this requires an unreasonably large mutation rate to explain variation, evolution

Enter Mendel…
Gregor Mendel (1822 - 1884)
http://bio.winona.edu/berg/241f00/Lec-note/Mendel.htm

Steven Berg, Winona State
Simplest Model

• Hardy-Weinberg equilibrium
 – If probability of allele A is p, of a is $q=1-p$
 \[p(AA) = p^2, \quad p(Aa) = 2pq, \quad p(aa) = q^2 \]

• Not always observed
 – Wahlund effect: fewer heterozygotes if multiple isolated subpopulations
 – Differences in viability, mating preference

• Assignment 5: limitations of theoretical model
 – Finite population, others