PDE Stability Analysis

COS 323



Lax Equivalence Theorem

For a well-posed linear PDE, necessary and
sufficient conditions for solver to converge:
— Consistency: local truncation error goes to zero

— Stability: solution remains bounded

Consistency derived from soundness of
approximation to derivatives as At — O

Stability: exact analysis often difficult



Von Neumann Stability Analysis

Valid under assumptions (linear PDE, periodic
boundary conditions), but often good starting point

Fourier expansion (!) of solution

u(x,t)=> a,(nAt)e™*
Assume
a, (nAt) = ()"
— Valid for linear PDEs, otherwise locally valid

— Will be stable if magnitude of £ is less than 1:
errors decay, not grow, over time



Von Neumann: Diffusion

u, =ku,

Equation, FTCS
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Von Neumann: Diffusion Equation, FTCS

Since sin? between 0 and 1, to have amplitude
less than 1 we need
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Scheme is conditionally stable



Von Neumann: Advection Equation, FTCS
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Magnitude always > 1: unconditionally unstable
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