Ordinary Ditferential Equations

COS 323



Ordinary Ditferential Equations (ODEs)

One independent variable; (PDEs have more)

Differential equations are ubiquitous, the lingua
franca of the sciences; many different fields are
linked by having similar differential equations

— electrical circuits

— Newtonian mechanics
— chemical reactions

— population dynamics

— economics... and so on, ad infinitum



Example: RLC circuit
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Example: Population Dynamics

- — 1798 Malthusian
catastrophe

1838 Verhulst,
logistic growth

Predator-prey systems,
Volterra-Lotka




Population Dynamics
Malthus:

dN
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dt :

Verhulst:
Logistic growth
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Predator-Prey Population Dynamics

Hudson Bay Company
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Predator-Prey Population Dymanics

V .Volterra, commercial fishing in the Adriatic

X,= biomass of predators (sharks)

X, = biomass of prey (fish)
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As Functions of Time
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More Behaviors

Self-limiting term — stable focus
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Putting Equations 1n State-Space Form

Basic form: dx/dt = g(x), where x is vector-valued

— Can introduce extra dimensions (variables) to eliminate
higher-order derivatives, dependence of g on t

Example: V+ay+ gy = f(t)
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State Space

Traditional example: the (nonlinear) pendulum

O+(g/1)sin6=0

mg sin 87




Pendulum in the Phase Plane




Varieties of Behavior

Stable focus
Periodic

Limit cycle



Varieties of Behavior

Stable focus
Periodic
Limit cycle

Chaos
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Numerical Evaluation of OD]

Today considering only Initial Value Problems
(vs. Boundary Value Problems)

Euler’s method: simple-minded, basis of
many others

Runge-Kutta (usually 4th-order): faster
convergence

Richardson extrapolation: fast, robust, can add
other tricks



Criteria for Evaluating

Accuracy: use Taylor series, big-Oh, classical
numerical analysis

Efficiency: running time may be hard to predict,
sometimes step size is adaptive

Stability: some methods diverge on some
problems



Forward (Explicit) Euler

X = g(x)
x®D = x® L g(x®YAt  (h=At)

L ocal error = O(h?)

Global (accumulated) error = O(h)

Limitation on step size: consider on X = —AX
— Unstable for h > 1/A



Towards Higher Order

Midpoint method 4th-order Runge Kutta

a = hg(x") a = hg(x")
b=hg(x" +a/2) b=hg(x* +a/2)
X = x% 1 h+0(h°) c=hg(x" +b/2)
d = hg(x" +c¢)
x4 = x® +1(a+2b+2c+d)

+0(h°)




Extrapolation

Richardson: compute for several values of h,
combine to cancel error: higher-order method

I//

— As with integration, yields some “classica
algorithms: Euler + Richardson — Runge Kutta

Burlisch-Stoer: fit function (polynomial or
rational) to approximation as a function of h;
extrapolate to h=0



Backward (Implicit) Euler

X(k+1) i X(k) 4 g(X(k+1)) h

Local error still O(h?)
Stable for large step size! (At least on X= —AX)
In general, requires nonlinear root finding

Implicit and semi-implicit methods for higher orders



Accuracy and Stability

Implicit methods important for “stift” systems:
explicit methods would need small h only for
stability, not accuracy
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