Monte Carlo Integration

COS 323



Integration in 4 Dimensions?

Trapezoidal rule in d dimensions?
— In 1D: 2 points
— In 2D: 4 points (corners of a square)

— In general: 29 points

Exponential growth in # of points for a
fixed order of method

— “Curse of dimensionality”

Other problems, e.g. non-rectangular domains



Rethinking Integration in 1D

j f(x)dx =?

Slide courtesy of
Peter Shirley



We Can Approximate...

1

j f (x)dx =j g(x)dx

0

Slide courtesy of
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Or We Can Average

j f (x)dx = E(f (x))

Slide courtesy of
Peter Shirley



Estimating the Average

jf(x)dx=%ZN:f(xi)

E(f(x)

Slide courtesy of
Peter Shirley



Other Domains

Slide courtesy of
Peter Shirley



“Monte Carlo” Integration

No “exponential explosion”
in required number of samples
with increase in dimension

(Some) resistance to
badly-behaved functions

Le Grand Casino de Monte-Carlo



Variance

Var[f(x)]=%2[f(xi)—E(f(X))]2

E(f(x))




Variance

Var|E(f (x))]= %Var[f ()]

Variance decreases as 1/N
Error decreases as 1/sqrt(N)
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Variance

Problem: variance decreases with 1/N

— Increasing # samples removes noise slowly

E(f(x))




Variance Reduction Techniques

Problem: variance decreases with 1/N

— Increasing # samples removes noise slowly

Variance reduction:
— Stratified sampling

— Importance sampling



Stratified Sampling

Estimate subdomains separately
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Stratified Sampling

This is still unbiased
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Stratified Sampling
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Importance Sampling

Put more samples where f(x) is bigger

j f (x)dx = %ZN_;Yi

f(x)
p(X;
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Importance Sampling

This is still unbiased
ElY,|= j Y (x) p(x)dx

(%)

5 P(X)

= j f (x)dx

X)dXx
E(f(x)) P(x)

for all N




Importance Sampling

Zero variance if p(x) ~ f(x)

p(x) = ct (x)
Yi e f(Xi) :l
C

p(;)
Var(Y)=0

E(f(x))

Less variance with better
importance sampling




Generating Random Points

* Uniform distribution:

— Use pseudorandom number generator

A

Probability

0



Pseudorandom Numberts

Deterministic, but have statistical properties
resembling true random numbers

Common approach: each successive
pseudorandom number is function of previous

Linear congruential method: x ., =(ax. +b)mod ¢

— Choose constants carefully, e.g.
a = 1664525
b =1013904223
c=2%-1



Pseudorandom Numberts

To get floating-point numbers in [0..1),
divide integer numbers by ¢ + 1

To get integers in range [u..v], divide by
(c+1)/(v—u+1), truncate, and add u
— Better statistics than using modulo (v—u+1)

— Only works if u and v small compared to c



Generating Random Points

* Uniform distribution:

— Use pseudorandom number generator

A

Probability

0



Importance Sampling

* Specific probability distribution:

— Function inversion

— Rejection

f(x)




Importance Sampling

* “Inversion method”

— Integrate f(x): Cumulative Distribution Function

f(x) | f(x)dx




Importance Sampling

* “Inversion method”
— Integrate f(x): Cumulative Distribution Function

— Invert CDF, apply to uniform random variable

f(x) | f(x)dx




Importance Sampling

* Specific probability distribution:

— Function inversion

— Rejection

f(x)




Generating Random Points

* “Rejection method”

— Generate random (x,y) pairs,
y between 0 and max(f(x))




Generating Random Points

* “Rejection method”

— Generate random (x,y) pairs,
y between 0 and max(f(x))

— Keep only samples where y < f(x)




Monte Carlo in Computer Graphics



ot, Solving Integral Equations
for Fun and Profit



or, Ugly Equations, Pretty Pictures



Computer Graphics Pipeline

Modeling Animation Rendering

Lighting
and
Reflectance




Rendering Equation

L (X,@") = Le(x,a“)')+_[Li(x,a‘)) f(x,,@')(@-N)da@

Q
OS urface

[Kajiya 1986]



Rendering Equation
L (X,@") = Le(x,a‘)')+jLi(x,a‘)) f(x,,@')(@-N)da@
(@)

This is an integral equation

Hard to solve!

— Can’t solve this
in closed form

— Simulate complex
phenomena

Heinrich



Rendering Equation
L (X,@") = Le(x,aﬁ')+jLi(x,a3) f(x,,@')(@-N)da@
(@)

This is an integral equation

Hard to solve!

— Can’t solve this
in closed form |

— Simulate complex il |

phenomena




Monte Carlo Integration

jf(x)dXz%ZN:f(xi)

Shirley



Monte Carlo Path Tracing

Estimate integral
for each pixel
by random sampling




Monte Carlo Global Illumination

Rendering = integration
— Antialiasing

— Soft shadows

— Indirect illumination

— Caustics



Monte Carlo Global Illumination

Rendering = integration
— Antialiasing

— Soft shadows

— Indirect illumination

— Caustics

Surface

I. =jL(x — e)dA



Monte Carlo Global Illumination

Rendering = integration

— Antialiasing fe

— Soft shadows ®

— Indirect illumination

— Caustics

Surface

L(x,W) = L,(x,x— e) +j f (XX = X, X —>e)L(x" > x)V(x, x)G(X, x")dA



Monte Carlo Global Illumination

Rendering = integration
— Antialiasing
— Soft shadows

— Indirect illumination

— Caustics

Herf

L(x.W) = L,(x.x =€)+ j f (XX = X, X = )L(X" = X)V(X, X)G(x, X")dA



Monte Carlo Global Illumination

— Antialiasing
— Soft shadows
— Indirect illumination ,
® ()]
— Caustics
Surface

L (x.W) = L (x,W) + j f (W, W) L (V) (V@ 17)
Q



Monte Carlo Global Illumination

Rendering = integration
— Antialiasing

— Soft shadows

— Indirect illumination

— Caustics

Debevec

L (x.W) = L (x,W) + j f (W, W) L (V) (V@ 17)
Q



Monte Carlo Global Illumination

. . . Specular
Rendering = integration Surface
— Antialiasing
— Soft shadows

— Indirect illumination

— Caustics

Diffuse Surface

L (X W) = L, (X)) + j f (W, W) L., (x W) (W @ i) oW
Q



Monte Carlo Global Illumination

* Rendering = integration

— Antialiasing

— Soft shadows

— Indirect illumination

— Caustics

Jensen

L (X W0) = L, (Vi) + j £ (W, W) L., (x W) (W @ i) oW
(@)



Challenge

Rendering integrals are difficult to evaluate

— Multiple dimensions

— Discontinuities y - N
* Partial occluders » "o |
* Highlights

e Caustics

Drettakis
L(x.W) = L,(x.x =€)+ j f (XX = X, X = )L(X" = X)V(X, X)G(x, X")dA
3



Challenge

* Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities

e Partial occluders
* Highlights

e (Caustics

Jensen

L(X,w) =L, (X,x— e) +_[ f (XX = X, x> e)L(x"—> x)V (X, X)G(x, x")dA



Monte Carlo Path Tracing

Big diffuse light source, 20 minutes




Monte Carlo Path Tracing

JDOO paths/pixel




Monte Carlo Path Tracing

Drawback: can be
noisy unless lots of
paths simulated

40 paths per pixel:

Lawrence



Monte Carlo Path Tracing

* Drawback: can be
noisy unless lots of
paths simulated

* 1200 paths per pixel:

Lawrence



Reducing Variance

Observation: some paths more important
(carry more energy) than others

— For example, shiny surfaces reflect more light
in the ideal “mirror” direction

Dl

Idea: put more samples where f(x) is bigger




Importance Sampling

Idea: put more samples where f(x) is bigger

\




Efttect of Importance Sampling

Less noise at a given number of samples

S i el

Uniform random sampling Importance sampling

Equivalently, need to simulate fewer paths for
some desired limit of noise
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