Monte Carlo Integration

COS 323

Integration in d Dimensions?

- Trapezoidal rule in d dimensions?
 - In 1D: 2 points
 - In 2D: 4 points (corners of a square)
 - In general: 2^d points
- Exponential growth in # of points for a fixed order of method
 - "Curse of dimensionality"
- Other problems, e.g. non-rectangular domains

Rethinking Integration in 1D

We Can Approximate...

Or We Can Average

Estimating the Average

$$\int_{0}^{1} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

Other Domains

$$\int_{a}^{b} f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

"Monte Carlo" Integration

- No "exponential explosion" in required number of samples with increase in dimension
- (Some) resistance to badly-behaved functions

Le Grand Casino de Monte-Carlo

Variance

$$Var[f(x)] = \frac{1}{N} \sum_{i=1}^{N} [f(x_i) - E(f(x))]^2$$

Variance

$$Var[E(f(x))] = \frac{1}{N} Var[f(x)]$$

Variance decreases as 1/N Error decreases as 1/sqrt(N)

Variance

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

Variance Reduction Techniques

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

- Variance reduction:
 - Stratified sampling
 - Importance sampling

Stratified Sampling

Estimate subdomains separately

Stratified Sampling

This is still unbiased

$$F_N = \frac{1}{N} \sum_{i=1}^N f(x_i)$$
$$= \frac{1}{N} \sum_{k=1}^M N_i F_i$$

Stratified Sampling

 Less overall variance if less variance in subdomains

$$Var[F_N] = \frac{1}{N^2} \sum_{k=1}^{M} N_i Var[F_i]$$

Put more samples where f(x) is bigger

$$\int_{\Omega} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$

$$Y_{i} = \frac{f(x_{i})}{p(x_{i})}$$

This is still unbiased

$$E[Y_i] = \int_{\Omega} Y(x) p(x) dx$$

$$= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx$$

$$= \int_{\Omega} f(x) dx$$
for all N

• Zero variance if $p(x) \sim f(x)$

$$p(x) = cf(x)$$

$$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$$

$$Var(Y) = 0$$

Less variance with better importance sampling

Generating Random Points

- Uniform distribution:
 - Use pseudorandom number generator

Pseudorandom Numbers

- Deterministic, but have statistical properties resembling true random numbers
- Common approach: each successive pseudorandom number is function of previous
- Linear congruential method: $x_{n+1} = (ax_n + b) \mod c$
 - Choose constants carefully, e.g.

$$a = 1664525$$
 $b = 1013904223$
 $c = 2^{32} - 1$

Pseudorandom Numbers

- To get floating-point numbers in [0..1), divide integer numbers by c+1
- To get integers in range [u..v], divide by (c+1)/(v-u+1), truncate, and add u
 - Better statistics than using modulo (v–u+1)
 - Only works if u and v small compared to c

Generating Random Points

- Uniform distribution:
 - Use pseudorandom number generator

- Specific probability distribution:
 - Function inversion
 - Rejection

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function
 - Invert CDF, apply to uniform random variable

- Specific probability distribution:
 - Function inversion
 - Rejection

Generating Random Points

- "Rejection method"
 - Generate random (x,y) pairs,y between 0 and max(f(x))

Generating Random Points

- "Rejection method"
 - Generate random (x,y) pairs,y between 0 and max(f(x))
 - Keep only samples where y < f(x)

Monte Carlo in Computer Graphics

or, Solving Integral Equations for Fun and Profit

or, Ugly Equations, Pretty Pictures

Computer Graphics Pipeline

Rendering Equation

Rendering Equation

$$L_o(x,\vec{\omega}') = L_e(x,\vec{\omega}') + \int_{\Omega} L_i(x,\vec{\omega}) f_r(x,\vec{\omega},\vec{\omega}') (\vec{\omega} \cdot \vec{n}) d\vec{\omega}$$

- This is an integral equation
- Hard to solve!
 - Can't solve this in closed form
 - Simulate complex phenomena

Rendering Equation

$$L_o(x,\vec{\omega}') = L_e(x,\vec{\omega}') + \int_{\Omega} L_i(x,\vec{\omega}) f_r(x,\vec{\omega},\vec{\omega}') (\vec{\omega} \cdot \vec{n}) d\vec{\omega}$$

- This is an integral equation
- Hard to solve!
 - Can't solve this in closed form
 - Simulate complex phenomena

Monte Carlo Integration

$$\int_{0}^{1} f(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Estimate integral for each pixel by random sampling

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_P = \int_S L(x \to e) dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Herf

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Debevec

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Jensen

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

Challenge

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics

Drettakis

$$L(x,\vec{w}) = L_e(x,x \to e) + \int_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

Challenge

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics

Jensen

$$L(x,\vec{w}) = L_e(x,x \to e) + \iint_S f_r(x,x' \to x, x \to e) L(x' \to x) V(x,x') G(x,x') dA$$

Big diffuse light source, 20 minutes

1000 paths/pixel

- Drawback: can be noisy unless *lots* of paths simulated
- 40 paths per pixel:

- Drawback: can be noisy unless *lots* of paths simulated
- 1200 paths per pixel:

Reducing Variance

- Observation: some paths more important (carry more energy) than others
 - For example, shiny surfaces reflect more light in the ideal "mirror" direction

• Idea: put more samples where f(x) is bigger

Importance Sampling

Idea: put more samples where f(x) is bigger

$$\int_{0}^{1} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$

$$Y_{i} = \frac{f(x_{i})}{p(x_{i})}$$

Effect of Importance Sampling

Less noise at a given number of samples

Uniform random sampling

Importance sampling

Equivalently, need to simulate fewer paths for some desired limit of noise