Monte Carlo Integration

COS 323
Integration in d Dimensions?

• Trapezoidal rule in d dimensions?
 – In 1D: 2 points
 – In 2D: 4 points (corners of a square)
 – In general: 2^d points

• Exponential growth in # of points for a fixed order of method
 – “Curse of dimensionality”

• Other problems, e.g. non-rectangular domains
Rethinking Integration in 1D

\[\int_{0}^{1} f(x) \, dx = ? \]
We Can Approximate…

\[\int_{0}^{1} f(x)dx = \int_{0}^{1} g(x)dx \]
Or We Can Average

\[
\int_{0}^{1} f(x) \, dx = E(f(x))
\]

Slide courtesy of Peter Shirley
Estimating the Average

\[\int_{0}^{1} f(x) dx = \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]
Other Domains

\[\int_a^b f(x) \, dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_i) \]

Slide courtesy of Peter Shirley
“Monte Carlo” Integration

- No “exponential explosion” in required number of samples with increase in dimension
- (Some) resistance to badly-behaved functions

Le Grand Casino de Monte-Carlo
Variance

$$Var[f(x)] = \frac{1}{N} \sum_{i=1}^{N} [f(x_i) - E(f(x))]^2$$
Variance

\[\text{Var}[E(f(x))] = \frac{1}{N} \text{Var}[f(x)] \]

Variance decreases as 1/N
Error decreases as 1/sqrt(N)
Variance

- Problem: variance decreases with $1/N$
 - Increasing # samples removes noise slowly
Variance Reduction Techniques

• Problem: variance decreases with $1/N$
 – Increasing # samples removes noise slowly

• Variance reduction:
 – Stratified sampling
 – Importance sampling
Stratified Sampling

- Estimate subdomains separately

\[E_k(f(x)) \]

\[X_1, X_N \]
Stratified Sampling

- This is still unbiased

\[F_N = \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

\[= \frac{1}{N} \sum_{k=1}^{M} N_i F_i \]
Stratified Sampling

- Less overall variance if less variance in subdomains

\[Var[F_N] = \frac{1}{N^2} \sum_{k=1}^{M} N_i Var[F_i] \]
Importance Sampling

- Put more samples where $f(x)$ is bigger

$$\int_{\Omega} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$Y_i = \frac{f(x_i)}{p(x_i)}$$
Importance Sampling

- This is still unbiased

\[E[Y_i] = \int_{\Omega} Y(x) p(x) dx \]

\[= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx \]

\[= \int_{\Omega} f(x) dx \]

for all \(N \)
Importance Sampling

- Zero variance if $p(x) \sim f(x)$

$p(x) = cf(x)$

$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$

$Var(Y) = 0$

Less variance with better importance sampling
Generating Random Points

- **Uniform distribution:**
 - Use pseudorandom number generator
Pseudorandom Numbers

• Deterministic, but have statistical properties resembling true random numbers

• Common approach: each successive pseudorandom number is function of previous

• Linear congruential method: \(x_{n+1} = (ax_n + b) \mod c \)
 – Choose constants carefully, e.g.
 \[
 \begin{align*}
 a &= 1664525 \\
 b &= 1013904223 \\
 c &= 2^{32} - 1
 \end{align*}
 \]
Pseudorandom Numbers

• To get floating-point numbers in [0..1), divide integer numbers by \(c + 1 \)

• To get integers in range \([u..v]\), divide by \((c+1)/(v–u+1)\), truncate, and add \(u\)
 – Better statistics than using modulo \((v–u+1)\)
 – Only works if \(u\) and \(v\) small compared to \(c\)
Generating Random Points

- Uniform distribution:
 - Use pseudorandom number generator
Importance Sampling

- Specific probability distribution:
 - Function inversion
 - Rejection

\[f(x) \]
Importance Sampling

• “Inversion method”
 – Integrate $f(x)$: Cumulative Distribution Function
Importance Sampling

- “Inversion method”
 - Integrate $f(x)$: Cumulative Distribution Function
 - Invert CDF, apply to uniform random variable
Importance Sampling

• Specific probability distribution:
 – Function inversion
 – Rejection
Generating Random Points

• “Rejection method”
 – Generate random \((x, y)\) pairs,
 \(y\) between 0 and \(\text{max}(f(x))\)
 Generating Random Points

• “Rejection method”
 – Generate random \((x,y)\) pairs,
 \(y \text{ between } 0 \text{ and } \max(f(x))\)
 – Keep only samples where \(y < f(x)\)
Monte Carlo in Computer Graphics
or, Solving Integral Equations for Fun and Profit
or, Ugly Equations, Pretty Pictures
Computer Graphics Pipeline

Modeling → Animation → Rendering

Lighting and Reflectance

Toy Story 3
Rendering Equation

\[L_o(x, \bar{\omega}') = L_e(x, \bar{\omega}') + \int L_i(x, \bar{\omega}) f_r(x, \bar{\omega}, \bar{\omega}') (\bar{\omega} \cdot \bar{n}) \, d\bar{\omega} \]

[Kajiya 1986]
Rendering Equation

\[L_o(x, \omega') = L_e(x, \omega') + \int_{\Omega} L_i(x, \omega) f_r(x, \omega, \omega')(\omega \cdot \hat{n}) \, d\omega \]

- This is an *integral equation*

- Hard to solve!
 - Can’t solve this in closed form
 - Simulate complex phenomena
This is an integral equation

Hard to solve!

- Can’t solve this in closed form
- Simulate complex phenomena
Monte Carlo Integration

\[\int_{0}^{1} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]
Monte Carlo Path Tracing

Estimate integral for each pixel by random sampling
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics
Monte Carlo Global Illumination

• Rendering = integration
 – Antialiasing
 – Soft shadows
 – Indirect illumination
 – Caustics

\[L_p = \int_{S} L(x \rightarrow e) dA \]
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

\[
L(x, \bar{w}) = L_e(x, x \rightarrow e) + \int_{s} f_r(x, x' \rightarrow x, x \rightarrow e)L(x' \rightarrow x)V(x, x')G(x, x')dA
\]
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

\[L(x, \bar{w}) = L_e(x, x \rightarrow e) + \int_{S} f_r(x, x' \rightarrow x, x \rightarrow e) L(x' \rightarrow x) V(x, x') G(x, x') dA \]
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

\[L_o(x, \tilde{\omega}) = L_e(x, \tilde{\omega}) + \int_{\Omega} f_r(x, \tilde{\omega}', \tilde{\omega}) L_i(x, \tilde{\omega}') (\tilde{\omega}' \cdot \tilde{n}) d\tilde{\omega}' \]
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

\[L_o(x, \bar{\omega}) = L_e(x, \bar{\omega}) + \int_{\Omega} f_r(x, \bar{\omega}', \bar{\omega}) L_i(x, \bar{\omega}') (\bar{\omega}' \cdot \bar{n}) d\bar{\omega}' \]
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

\[L_o(x, \bar{w}) = L_e(x, \bar{w}) + \int_{\Omega} f_r(x, \bar{w}', \bar{w}) L_i(x, \bar{w}') (\bar{w}' \cdot \bar{n}) d\bar{w} \]
Monte Carlo Global Illumination

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

\[
L_o(x, \bar{w}) = L_e(x, \bar{w}) + \int_{\Omega} f_r(x, \bar{w}', \bar{w}) L_t(x, \bar{w}') (\bar{w}' \cdot \bar{n}) d\bar{w}
\]
Challenge

• Rendering integrals are difficult to evaluate
 – Multiple dimensions
 – Discontinuities
 • Partial occluders
 • Highlights
 • Caustics

\[
L(x, \bar{w}) = L_e(x, x \rightarrow e) + \int_S f_r(x, x' \rightarrow x, x \rightarrow e) L(x' \rightarrow x) V(x, x') G(x, x') dA
\]
Challenge

• Rendering integrals are difficult to evaluate
 – Multiple dimensions
 – Discontinuities
 • Partial occluders
 • Highlights
 • Caustics

\[
L(x, \bar{w}) = L_e(x, x \rightarrow e) + \int_S f_r(x, x' \rightarrow x, x \rightarrow e) L(x' \rightarrow x) V(x, x') G(x, x') dA
\]
Monte Carlo Path Tracing

Big diffuse light source, 20 minutes
Monte Carlo Path Tracing

1000 paths/pixel
Monte Carlo Path Tracing

- Drawback: can be noisy unless *lots* of paths simulated
- 40 paths per pixel:
Monte Carlo Path Tracing

- Drawback: can be noisy unless lots of paths simulated
- 1200 paths per pixel:
Reducing Variance

• Observation: some paths more important (carry more energy) than others
 – For example, shiny surfaces reflect more light in the ideal “mirror” direction

• Idea: put more samples where \(f(x) \) is bigger
Importance Sampling

- Idea: put more samples where \(f(x) \) is bigger

\[
\int_{0}^{1} f(x) \, dx = \frac{1}{N} \sum_{i=1}^{N} Y_i
\]

\[
Y_i = \frac{f(x_i)}{p(x_i)}
\]
Effect of Importance Sampling

- Less noise at a given number of samples

Uniform random sampling

Importance sampling

- Equivalently, need to simulate fewer paths for some desired limit of noise