Sampling and Aliasing

COS 323
Signal Processing

• Sampling a continuous function
• Convolve with reconstruction filter to re-create signal
How to Sample?

- Reconstructed signal might be very different from original: “aliasing”
Why Does Aliasing Happen?

• Sampling = multiplication by shah function $\text{III}(x)$ (also known as impulse train)
Digression: Delta Function

Kronecker delta

\[\delta_{ij} = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} \]

Dirac delta

\[\delta(x) = \begin{cases}
0 & \text{if } x \neq 0 \\
\infty & \text{if } x = 0
\end{cases} \]

\[\int \delta(x) \, dx = 1 \]

- Can think of as \[\delta(x) = \lim_{\sigma \to 0^+} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \]
Scaled and Translated Dirac Delta

\[c \delta(x - x_0) = \begin{cases} 0 & \text{if } x \neq x_0 \\ \infty & \text{if } x = x_0 \end{cases} \]

\[\int c \delta(x - x_0) dx = c \]
Impulse Train

$$\text{III}(x) = \cdots + \partial(x + 2) + \partial(x + 1) + \partial(x) + \partial(x - 1) + \partial(x - 2) + \cdots$$
Why Does Aliasing Happen?

- Sampling = multiplication by shah function $\text{III}(x)$ (also known as impulse train)

![Diagram showing the process of sampling a function and the resulting aliased signal](image)
Fourier Analysis

- Multiplication in primal space = convolution in frequency space

\[F(f(x)g(x)) = F(f(x)) \ast F(g(x)) \]

- Fourier transform of \(III \) is \(III \)
Fourier Analysis

• Result: high frequencies can “alias” into low frequencies
Aliasing
• Convolution with reconstruction filter = multiplication in frequency space

\[F(f(x) \ast g(x)) = F(f(x))F(g(x)) \]
• Conclusions:
 – High frequencies can alias into low frequencies
 – Can’t be cured by a different reconstruction filter
 – Nyquist limit: capture all frequencies iff bandlimited – maximum frequency < ½ sampling rate
Aliasing strikes!
Other Aliasing Examples

- Car wheel “spins backwards” on film
- Jaggies in graphics
- “Crawling jaggies” on edges of objects as they move
Filters for Sampling

- **Solution**: insert filter *before* sampling
 - “Sampling” or “bandlimiting” or “antialiasing” filter
 - Low-pass filter
 - Eliminate frequency content above Nyquist limit
 - Result: aliasing replaced by blur
 - Partial alternative: *oversampling*, digital filtering
Antialiasing Jaggies

Aliased

Postfiltered: blurry jaggies

Correctly prefiltered
Ideal Sampling Filter

- **“Brick wall” filter:**
 box in frequency

- **In space: sinc function**
 - $sinc(x) = \sin(x) / x$
 - Infinite support
 - Possibility of “ringing”
Cheap Sampling Filter

- **Box in space**
 - Cheap to evaluate
 - Finite support

- **In frequency: sinc**
 - Imperfect bandlimiting
Gaussian Sampling Filter

• Fourier transform of Gaussian = Gaussian

• Good compromise as sampling filter:
 – Well approximated by function w. finite support
 – Good bandlimiting performance