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Life in the Frequency Domain

Jean Baptiste Joseph 
Fourier (1768-1830)



Spectrogram, Northern Cardinal



JPEG Image Compression

Discrete 
Cosine 

Transform
(DCT)

[Steven W. Smith 1997]



Fourier Transform and Convolution

• Fourier transform turns convolution
into multiplication:

F (f(x) * g(x)) = F (f(x)) F (g(x))

(and vice versa):

F (f(x) g(x)) = F (f(x)) * F (g(x))



Fourier Transform

• Continuous Fourier transform:

• Discrete Fourier transform:

• F is a function of frequency – describes how much of 
each frequency f contains

• Fourier transform is invertible
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Computing Discrete Fourier Transform

• Straightforward computation: for each of n DFT 
values, loop over n input samples.  Total: O(n2)

• Fast Fourier Transform (FFT): O(n log2 n) time
– Revolutionized signal processing, filtering, 

compression, etc.
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Discovered by Johann Carl Friedrich Gauss (1777-1855)

The FFT



The FFT

Rediscovered and popularized in 1965 by
J. W. Cooley and John Tukey (Princeton alum and faculty)



The FFT
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The FFT

Key idea: divide and conquer
– Separate computation on even and odd elements
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Half-size FFT on
even elements

Half-size FFT on
odd elements



The FFT

• Now apply algorithm recursively!



FFT Butterfly



The FFT

• Final detail: how
to find elements
involved in initial
size-2 FFTs?

• Bit reversal!

0 → 000 → 000 → 0
1 → 001 → 100 → 4
2 → 010 → 010 → 2
3 → 011 → 110 → 6
4 → 100 → 001 → 1
5 → 101 → 101 → 5
6 → 110 → 011 → 3
7 → 111 → 111 → 7



FFT Running Time

• Time to compute FFT of length n:
– Solve two subproblems of length n/2

– Additional processing proportional to n

• Recurrence relation with solution
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FFT Running Time

• Proof:
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DFT of Real Signals

• Standard FFT is complex → complex
– n real numbers as input yields n complex numbers

– But: symmetry relation for real inputs Fn-k = (Fk)*

– Variants of FFT to compute this efficiently

• Discrete Cosine Transform (DCT)
– Reflect real input to get signal of length 2n

– Resulting FFT real and symmetric

– n real numbers as input, n real numbers as output



Application: JPEG Image Compression

• Perceptually-based lossy compression of images

• Algorithm
– Transform colors

– Divide into 8×8 blocks

– 2-dimensional DCT on each block

– Perceptually-guided quantization

– Lossless run-length and Huffman encoding



Application: JPEG Image Compression

Discrete 
Cosine 

Transform
(DCT)

[Steven W. Smith 1997]



Application: Polynomial Multiplication

• Usual algorithm for multiplying two polynomials 
of degree n is O(n2)

• Observation: can use DFT to efficiently go 
between polynomial coefficients fx

and polynomial evaluated at ωn
k
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Application: Polynomial Multiplication

• So, we have an O(n log n) algorithm for 
multiplying two degree-n polynomials:
– DFT on coefficients

– Multiply

– Inverse DFT



Application: Diffraction

• (Far-field) diffraction pattern of
parallel light passing through an aperture is
Fourier transform of aperture

I(x,y)=F (A(x,y))



Application: Diffraction

Square aperture



Application: Diffraction

Circular aperture: Airy disk



Application: Diffraction

Diffraction + defocus in telescope image
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