
Signal Processing

COS 323



Digital “Signals”

• 1D: functions of space or time (e.g., sound)

• 2D: often functions of 2 spatial dimensions
(e.g. images)

• 3D: functions of 3 spatial dimensions
(CAT, MRI scans) or 2 space, 1 time (video)



Digital Signal Processing

1. Understand analogues of filters

2. Understand nature of sampling



Filtering

• Consider a noisy 1D signal f(x)

• Basic operation: smooth the signal
– Output = new function h(x)

– Want properties: linearity, shift invariance

• Linear Shift-Invariant Filters
– If you double input, double output

– If you shift input, shift output



Convolution

• Output signal at each point = weighted average of 
local region of input signal
– Depends on input signal, pattern of weights

– “Filter” g(x) = function of weights for linear combination

– Basic operation = move filter to some position x,
add up f times g



Convolution

∫
∞

∞−
−=∗ dttxgtfxgxf )()()()(

f(x)

g(x)



Convolution

• f is called “signal” and g is “filter” or “kernel”, 
but the operation is symmetric

• Usually desirable to leave a constant signal
unchanged: choose g such that

1)( =∫
∞

∞−
dttg



Filter Choices

• Simple filters: box, triangle



Gaussian Filter

• Very commonly used filter

2

2

2

2
1)( σ

πσ

x

exG
−

=



Gaussian Filters

• Gaussians are used because:
– Smooth (infinitely differentiable)

– Decay to zero rapidly

– Simple analytic formula

– Separable: multidimensional Gaussian =
product of Gaussians in each dimension

– Convolution of 2 Gaussians = Gaussian

– Limit of applying multiple filters (*) is Gaussian
(Central limit theorem)



2D Gaussian Filter



Sampled Signals

• Can’t store continuous signal: instead store 
“samples”
– Usually evenly sampled:

f0=f(x0), f1=f(x0+∆x), f2=f(x0+2∆x), f3=f(x0+3∆x), …

• Instantaneous measurements of continuous signal
– This can lead to problems

→



Aliasing

• Reconstructed signal might be very different 
from original: “aliasing”

• Solution: smooth the signal before sampling

→ →



Discrete Convolution

• Integral becomes sum over samples

• Normalization condition is

∑ −=∗
i

ixi gfgf

1=∑
i

ig



Computing Discrete Convolutions

• What happens near edges of signal?
– Ignore (Output is smaller than input)

– Pad with zeros (edges get dark)

– Replicate edge samples

– Wrap around

– Reflect

– Change filter

∑ −=∗
i

ixi gfgf



Computing Discrete Convolutions

• If f has n samples and g has m nonzero samples,
straightforward computation takes time

O(nm)

• OK for small filter kernels, bad for large ones

∑ −=∗
i

ixi gfgf



Example: Smoothing

Original image Smoothed with
2D Gaussian kernel



Example: Smoothed Derivative

• Derivative of noisy signal = more noisy

• Solution: smooth with a Gaussian
before taking derivative

• Differentiation and convolution both linear 
operators: they “commute”

( )
dx
dgfg

dx
dfgf

dx
d

∗=∗=∗



Example: Smoothed Derivative

• Result: good way of finding derivative = 
convolution with derivative of Gaussian



Smoothed Derivative in 2D

• What is “derivative” in 2D?  Gradient:

• Gaussian is separable!

• Combine smoothing, differentiation:









∂
∂

∂
∂

=∇
y
f

x
fyxf ,),(

( )
( )
( ) 









′∗∗

∗′∗
=









′∗

′∗
=∗∇

)()(),(

)()(),(

)()(),(

)()(),(
),(),(

11

11

11

11
2 yGxGyxf

yGxGyxf

yGxGyxf

yGxGyxf
yxGyxf

)()(),( 112 yGxGyxG =



Smoothed Derivative in 2D

( )
( )
( ) 









′∗∗

∗′∗
=









′∗

′∗
=∗∇

)()(),(

)()(),(

)()(),(

)()(),(
),(),(

11

11

11

11
2 yGxGyxf

yGxGyxf

yGxGyxf

yGxGyxf
yxGyxf



Smoothed Derivative in 2D

Original Image Smoothed Gradient Magnitude



Canny Edge Detector

• Smooth

• Find derivative

• Find maxima

• Threshold



Canny Edge Detector

Original Image Edges



Fourier Transform

• Transform applied to function to analyze its 
“frequency” content

• Several versions
– Fourier series:

• input = continuous, bounded; output = discrete, unbounded

– Fourier transform:
• input = continuous, unbounded; output = continuous, unbounded

– Discrete Fourier transform (DFT):
• input = discrete, bounded; output = discrete, bounded



Fourier Series

• Periodic function f(x) defined over [–π .. π ]

where

∑
∞

=

++=
1

02
1 )sin()cos()(

n
nn nxbnxaaxf

∫
∫

−

−

=

=
π

ππ

π

ππ

dxnxxfb

dxnxxfa

n

n

)sin()(

)cos()(

1

1



Fourier Series

• This works because sines, cosines are 
orthonormal over [–π .. π ]:

• Kronecker delta:



 =

=

=

=

=

∫
∫
∫

−

−

−

otherwise0

if1

0)cos()sin(

)sin()sin(

)cos()cos(

1

1

1

nm

dxnxmx

dxnxmx

dxnxmx

mn

mn

mn

δ

δ

δ

π

ππ

π

ππ

π

ππ



Fourier Transform

• Continuous Fourier transform:

• Discrete Fourier transform:

• F is a function of frequency – describes how much of 
each frequency f contains

• Fourier transform is invertible

( ) dxexfk xikxf ∫
∞

∞−
== π2)()(F )(F

∑
−

=

=
1

0

2
kF

n

x

xi
x

n
k

ef π



Fourier Transform and Convolution

• Fourier transform turns convolution
into multiplication:

F (f(x) * g(x)) = F (f(x)) F (g(x))

(and vice versa):

F (f(x) g(x)) = F (f(x)) * F (g(x))



Fourier Transform and Convolution

• Useful application #1: Use frequency space to 
understand effects of filters
– Example: Fourier transform of a Gaussian

is a Gaussian

– Thus: attenuates high frequencies

× =

Frequency

A
m

pl
itu

de

Frequency

A
m

pl
itu

de

Frequency

A
m

pl
itu

de



Fourier Transform and Convolution

• Box function?

• In frequency space:
sinc function
– sinc(x) = sin(x) / x

– Not as good at attenuating
high frequencies



Fourier Transform and Convolution

• Fourier transform of derivative:

• Blows up for high frequencies!
– After Gaussian smoothing, doesn’t blow up

( ))()( 2 xfxf
dx
d

ki FF π=










Fourier Transform and Convolution

• Useful application #2: Efficient computation
– Fast Fourier Transform (FFT) takes time

O(n log n)

– Thus, convolution can be performed in time
O(n log n + m log m)

– Greatest efficiency gains for large filters


	Signal Processing
	Digital “Signals”
	Digital Signal Processing
	Filtering
	Convolution
	Convolution
	Convolution
	Filter Choices
	Gaussian Filter
	Gaussian Filters
	2D Gaussian Filter
	Sampled Signals
	Aliasing
	Discrete Convolution
	Computing Discrete Convolutions
	Computing Discrete Convolutions
	Example: Smoothing
	Example: Smoothed Derivative
	Example: Smoothed Derivative
	Smoothed Derivative in 2D
	Smoothed Derivative in 2D
	Smoothed Derivative in 2D
	Canny Edge Detector
	Canny Edge Detector
	Fourier Transform
	Fourier Series
	Fourier Series
	Fourier Transform
	Fourier Transform and Convolution
	Fourier Transform and Convolution
	Fourier Transform and Convolution
	Fourier Transform and Convolution
	Fourier Transform and Convolution

