


On-lLine Estimation

Have looked at “off-line” model estimation:
all data is available

For many applications, want best estimate
immediately when each new datapoint arrives
— Take advantage of noise reduction

— Predict (extrapolate) based on model

— Applications: controllers, tracking, ...
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On-lLine Estimation

Have looked at “off-line” model estimation:
all data is available

For many applications, want best estimate
immediately when each new datapoint arrives
— Take advantage of noise reduction

— Predict (extrapolate) based on model

— Applications: controllers, tracking, ...

How to do this without storing all data points?



Kalman Filtering

Assume that results of experiment

are noisy measurements of
“system state”

Model of how system evolves

Optimal combination
of system model and observations

Rudolf Emil Kalman
Prediction / correction framework

Acknowledgment: much of the following material is based on the
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)



Simple Example

Measurement of a single point z;
Variance o;* (uncertainty o)

Best estimate of true position X, = Z,

Uncertainty in best estimate 512 = 012



Simple Example

Second measurement z,, variance o,?

Best estimate of true position?




Simple Example

Second measurement z,, variance o,?

Best estimate of true position: weighted average
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Online Weighted Average

Combine successive measurements into
constantly-improving estimate

Uncertainty usually decreases over time

Only need to keep current measurement,
last estimate of state and uncertainty



Terminology

In this example, position is state
(in general, any vector)

State can be assumed to evolve over time
according to a system model or process model
(in this example, “nothing changes”)

Measurements (possibly incomplete, possibly
noisy) according to a measurement model

Best estimate of state X with covariance P



Linear Models

For “standard” Kalman filtering, everything
must be linear

System model:
X = D X1+ Gy
The matrix @, is state transition matrix

The vector &, represents additive noise,
assumed to have covariance Q



Linear Models

Measurement model:
z, = H. X + 11,

Matrix H 1s measurement matrix

The vector u is measurement noise,
assumed to have covariance R



PV Model

Suppose we wish to incorporate velocity

i X

Btz
g
H=[1 o]



Prediction/Correction

Multiple values around at each iteration:

— X is prediction of new state on the basis of past data
— Z, is predicted observation

— 2, is new observation

— X, IS new estimate of state



Prediction/Correction

Predict new state

, %
X = (Dk—lxk—l
/ T
Pk = q)k—lpk—lq)k—l + Qk—l
4 4
Ly = Hkxk

Correct to take new measurements into account
~ 4 4
Xe = X + Kk(zk =z Hkxk)
Pk = (I T Kka)Pk’



Kalman Gain

Weighting of process model vs. measurements
g T g T -1
K, = PH](HPHT +R, )

Compare to what we saw earlier:
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Results: Position-Only Model
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[Welch & Bishop]



Results: Position-Velocity Model
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Extension: Multiple Models

Simultaneously run many KFs with different
system models

Estimate probability each KF is correct

Final estimate: weighted average



H stimation

Probability |

Given some Kalman filter, the probability of a

measurement z, is just n-dimensional Gaussian

ST

where
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Results: Multiple Models
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Results: Multiple Models
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+++++ PV Estimate
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Results: Multiple Models

y [meters]

—_
o
4.
&
N
o
3.
~
ok

[Welch & Bishop]



Extension; SCAAT

H can be different at different time steps
— Different sensors, types of measurements

— Sometimes measure only part of state

Single Constraint At A Time (SCAAT)
— Incorporate results from one sensor at once

— Alternative: wait until you have measurements from
enough sensors to know complete state (MCAAT)

— MCAAT equations often more complex, but
sometimes necessary for initialization



UNC HiBall

6 cameras, looking at LEDs on ceiling

LEDs flash over time

[Welch & Bishop]



Extension: Nonlinearity (EKF)

HiBall state model has nonlinear degrees of
freedom (rotations)

Extended Kalman Filter allows nonlinearities by:
— Using general functions instead of matrices
— Linearizing functions to project forward

— Like 1%t order Taylor series expansion

— Only have to evaluate Jacobians (partial derivatives),
not invert process/measurement functions



Other Extensions

On-line noise estimation
Using known system input (e.g. actuators)
Using information from both past and future

Non-Gaussian noise and particle filtering
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