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On-Line Estimation

• Have looked at “off-line” model estimation:
all data is available

• For many applications, want best estimate 
immediately when each new datapoint arrives
– Take advantage of noise reduction

– Predict (extrapolate) based on model

– Applications: controllers, tracking, …
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On-Line Estimation

• Have looked at “off-line” model estimation:
all data is available

• For many applications, want best estimate 
immediately when each new datapoint arrives
– Take advantage of noise reduction

– Predict (extrapolate) based on model

– Applications: controllers, tracking, …

• How to do this without storing all data points?



Kalman Filtering

• Assume that results of experiment
are noisy measurements of
“system state”

• Model of how system evolves

• Optimal combination
of system model and observations

• Prediction / correction framework
Rudolf Emil Kalman

Acknowledgment: much of the following material is based on the
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)



Simple Example

• Measurement of a single point z1

• Variance σ1
2 (uncertainty σ1)

• Best estimate of true position 

• Uncertainty in best estimate
11̂ zx =
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Simple Example

• Second measurement z2, variance σ2
2

• Best estimate of true position?

z1 z2



Simple Example

• Second measurement z2, variance σ2
2

• Best estimate of true position: weighted average 

• Uncertainty in best estimate
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Online Weighted Average

• Combine successive measurements into 
constantly-improving estimate

• Uncertainty usually decreases over time

• Only need to keep current measurement,
last estimate of state and uncertainty



Terminology

• In this example, position is state
(in general, any vector)

• State can be assumed to evolve over time 
according to a system model or process model
(in this example, “nothing changes”)

• Measurements (possibly incomplete, possibly 
noisy) according to a measurement model

• Best estimate of state     with covariance Px̂



Linear Models

• For “standard” Kalman filtering, everything
must be linear

• System model:

• The matrix Φk is state transition matrix

• The vector ξk represents additive noise,
assumed to have covariance Q

111 −−− +Φ= kkkk xx ξ



Linear Models

• Measurement model:

• Matrix H is measurement matrix

• The vector µ is measurement noise,
assumed to have covariance R

kkkk xHz µ+=



PV Model

• Suppose we wish to incorporate velocity
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Prediction/Correction

• Multiple values around at each iteration: 
– is prediction of new state on the basis of past data

– is predicted observation

– is new observation

– is new estimate of statek
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Prediction/Correction

• Predict new state

• Correct to take new measurements into account
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Kalman Gain

• Weighting of process model vs. measurements

• Compare to what we saw earlier:

( ) 1TT −
+′′= kkkkkkk RHPHHPK

2
2

2
1

2
1

σσ
σ
+



Results: Position-Only Model

Moving Still

[Welch & Bishop]



Results: Position-Velocity Model

[Welch & Bishop]

Moving Still



Extension: Multiple Models

• Simultaneously run many KFs with different 
system models

• Estimate probability each KF is correct

• Final estimate: weighted average



Probability Estimation

• Given some Kalman filter, the probability of a 
measurement zk is just n-dimensional Gaussian

where
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Results: Multiple Models

[Welch & Bishop]



Results: Multiple Models

[Welch & Bishop]



Results: Multiple Models

[Welch & Bishop]



Extension: SCAAT

• H can be different at different time steps
– Different sensors, types of measurements

– Sometimes measure only part of state

• Single Constraint At A Time (SCAAT)
– Incorporate results from one sensor at once

– Alternative: wait until you have measurements from 
enough sensors to know complete state (MCAAT)

– MCAAT equations often more complex, but 
sometimes necessary for initialization



UNC HiBall

• 6 cameras, looking at LEDs on ceiling

• LEDs flash over time

[Welch & Bishop]



Extension: Nonlinearity (EKF)

• HiBall state model has nonlinear degrees of 
freedom (rotations)

• Extended Kalman Filter allows nonlinearities by:
– Using general functions instead of matrices

– Linearizing functions to project forward

– Like 1st order Taylor series expansion

– Only have to evaluate Jacobians (partial derivatives), 
not invert process/measurement functions



Other Extensions

• On-line noise estimation

• Using known system input (e.g. actuators)

• Using information from both past and future

• Non-Gaussian noise and particle filtering
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