


Dimensionality Reduction

Map points in high-dimensional space to
lower number of dimensions

Preserve structure: pairwise distances, etc.

Useful for further processing:
— Less computation, fewer parameters

— Easier to understand, visualize



PCA

Principal Components Analysis (PCA):
approximating a high-dimensional data set
with a lower-dimensional linear subspace
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SVD and PCA

Data matrix with points as rows, take SVD

— Subtract out mean (“whitening”)
Columns of V, are principal components

Value of w; gives importance of each
component



PCA on Faces: “Eigenfaces”

First principal component

Average

face \
o

Other
components

For all except average,
//gray” = O,

“white” > 0,

“black” < 0



Uses of PCA

Compression: each new image can be

approximated by projection onto first few
principal components

Recognition: for a new image, project onto first
few principal components, match feature vectors



PCA tor Relighting

Images under different illumination
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[Matusik & McMillan]



PCA tor Relighting

Images under different illumination

Most variation captured
by first 5 principal
components — can
re-illuminate by
combining only

a few images

[Matusik & McMillan]



PCA tfor DNA Microarrays

Measure gene activation under different conditions

Cells of Interest

cDNA microarrays 2

Known DNA sequences
Y

Isolate mRNA

Glass slide B
experiments

Reference sample

Resulting data

[Troyanskayal




PCA tfor DNA Microarrays

Measure gene activation under different conditions
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[Troyanskayal




PCA tfor DNA Microarrays

PCA shows patterns of correlated activation

— Genes with same pattern might have similar function

a)

component time (min)

relative variance
0oo 010 D20 030

d)

50 100
time (min) time (min)

[Wall et al.]



PCA tfor DNA Microarrays

PCA shows patterns of correlated activation

— Genes with same pattern might have similar function
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projection on 1

[Wall et al.]



Multidimensional Scaling

In some experiments, can only measure

similarity or dissimilarity

— e.g., is response to stimuli similar or different?

— Frequent in psychophysical experiments,
preference surveys, etc.

Want to recover absolute positions in

k-dimensional space



Multidimensional Scaling

Example: given pairwise distances between cities

| |Ati |Chi |Den [Hou [LA |Mia |NYC [SF [Sea |[DC |
Alanta | o | [ | | | p [ | |
Chicago| 587 of [ | | | | [ | |
Denver | 1212 920 o | [ [ | | |
Houston| 701| 940| 879 o [ | | | |
LA | 1936| 1745| 831 1374 O |

Miami | 604| 1188| 1726] 968| 2339| 0

— Want to recover locations

[Pellacini et al.]



Euclidean MDS

Formally, let’s say we have n x n matrix D
consisting of squared distances d;; = (x;— x;)?

Want to recover n x d matrix X of positions
in d-dimensional space

0 (Xl £ X2)2 (Xl i X3)2
(Xl S X2)2 0 (Xz = X3)2

(Xl 7 X3)2 (Xz F X3)2 0

X = (...Xz...




Euclidean MDS

Observe that

ool ), 2

Strategy: convert matrix D of d;# into

matrix B of xx;

— “Centered” distance matrix
Z 8= ,00



Euclidean MDS

Centering:

— Sum of row i of D = sum of columnijof D =

S. —Zd ZXZ—ZXX + X
= NnX —ZXZX +Zx

— Sum of all entries in D =

= Z‘Si = ZnZXi2 —Z(injz



Euclidean MDS

Choose 2x. = 0

— Solution will have average position at origin
S NN S PN e
J ]

2 1 1 1 A

— Then,

S0, to get B:

— compute row (or column) sums

— compute sum of sums

— apply above formula to each entry of D
— Divide by -2



Euclidean MDS

Now have B, want to factor into XX!
If X is n x d, B must have rank d

Take SVD, set all but top d singular values to O
— Eliminate corresponding columns of U and V

— Have B,=U,W,V,!

— B is square and symmetric, so U = V

— Take X = U, times square root of W,



Multidimensional Scaling

Result (d = 2):

™~
Seattle

Chicago

Denver

SF N

Atlanta ‘jr’
LA \—v\m.

[Pellacini et al.]



Multidimensional Scaling

Caveat: actual axes, center not necessarily
what you want (can’t recover them!)

This is “classical” or “Euclidean” MDS [Torgerson 52]

— Distance matrix assumed to be actual Euclidean distance

More sophisticated versions available

— “Non-metric MDS”: not Euclidean distance,
sometimes just inequalities

— “Weighted MDS”: account for observer bias
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