
Singular Value Decomposition

COS 323



Underconstrained Least Squares

• What if you have fewer data points than 
parameters in your function?
– Intuitively, can’t do standard least squares

– Recall that solution takes the form ATAx = ATb

– When A has more columns than rows,
ATA is singular: can’t take its inverse, etc.



Underconstrained Least Squares

• More subtle version: more data points than 
unknowns, but data poorly constrains function

• Example: fitting to y=ax2+bx+c



Underconstrained Least Squares

• Problem: if problem very close to singular, 
roundoff error can have a huge effect
– Even on “well-determined” values!

• Can detect this:
– Uncertainty proportional to covariance C = (ATA)-1

– In other words, unstable if ATA has small values

– More precisely, care if xT(ATA)x is small for any x

• Idea: if part of solution unstable, set answer to 0
– Avoid corrupting good parts of answer



Singular Value Decomposition (SVD)

• Handy mathematical technique that has 
application to many problems

• Given any m×n matrix A, algorithm to find 
matrices U, V, and W such that

A = U W VT

U is m×n and orthonormal

W is n×n and diagonal

V is n×n and orthonormal



SVD

• Treat as black box: code widely available
In Matlab: [U,W,V]=svd(A,0)
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SVD

• The wi are called the singular values of A

• If A is singular, some of the wi will be 0

• In general rank(A) = number of nonzero wi

• SVD is mostly unique (up to permutation of 
singular values, or if some wi are equal)



SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

– Using fact that inverse = transpose
for orthogonal matrices

– Since W is diagonal, W-1 also diagonal with 
reciprocals of entries of W



SVD and Inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

• This fails when some wi are 0
– It’s supposed to fail – singular matrix

• Pseudoinverse: if wi=0, set 1/wi to 0 (!)
– “Closest” matrix to inverse

– Defined for all (even non-square, singular, etc.) 
matrices

– Equal to (ATA)-1AT if ATA invertible



SVD and Least Squares

• Solving Ax=b by least squares

• x=pseudoinverse(A) times b

• Compute pseudoinverse using SVD
– Lets you see if data is singular

– Even if not singular, ratio of max to min singular 
values ( = condition number) tells you
how stable the solution will be

– Set 1/wi to 0 if wi is small (even if not exactly 0)



SVD and Eigenvectors

• Let A=UWVT, and let xi be ith column of V

• Consider ATA xi:

• So elements of W are sqrt(eigenvalues) and 
columns of V are eigenvectors of ATA
– What we wanted for robust least squares fitting!
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SVD and Matrix Similarity

• One common definition for the norm of a 
matrix is the Frobenius norm:

• Frobenius norm can be computed from SVD

• So changes to a matrix can be evaluated by 
looking at changes to singular values
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SVD and Matrix Similarity

• Suppose you want to find best rank-k
approximation to A

• Answer: set all but the largest k singular values 
to zero

• Can form compact representation by eliminating 
columns of U and V corresponding to zeroed wi



SVD and PCA

• Principal Components Analysis (PCA): 
approximating a high-dimensional data set
with a lower-dimensional subspace
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SVD and PCA

• Data matrix with points as rows, take SVD
– Subtract out mean (“whitening”)

• Columns of Vk are principal components

• Value of wi gives importance of each 
component



PCA on Faces: “Eigenfaces”

Average
face

First principal component

Other
components

For all except average,
“gray” = 0,

“white” > 0,
“black” < 0



Using PCA for Recognition

• Store each person as coefficients of projection 
onto first few principal components

• Compute projections of target image, compare 
to database (“nearest neighbor classifier”)
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Total Least Squares

• One final least squares application

• Fitting a line: vertical vs. perpendicular error



Total Least Squares

• Distance from point to line:

where n is normal vector to line, a is a constant

• Minimize:
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Total Least Squares

• First, let’s pretend we know n, solve for a

• Then
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Total Least Squares

• So, let’s define

and minimize
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Total Least Squares

• Write as linear system

• Have An=0
– Problem: lots of n are solutions, including n=0

– Standard least squares will, in fact, return n=0
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Constrained Optimization

• Solution: constrain n to be unit length

• So, try to minimize |An|2 subject to |n|2=1

• Expand in eigenvectors ei of ATA:

where the λi are eigenvalues of ATA
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Constrained Optimization

• To minimize                  subject to
set µmin = 1, all other µi = 0

• That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue
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