
Singular Value Decomposition

COS 323

Underconstrained Least Squares

• What if you have fewer data points than
parameters in your function?
– Intuitively, can’t do standard least squares

– Recall that solution takes the form ATAx = ATb

– When A has more columns than rows,
ATA is singular: can’t take its inverse, etc.

Underconstrained Least Squares

• More subtle version: more data points than
unknowns, but data poorly constrains function

• Example: fitting to y=ax2+bx+c

Underconstrained Least Squares

• Problem: if problem very close to singular,
roundoff error can have a huge effect
– Even on “well-determined” values!

• Can detect this:
– Uncertainty proportional to covariance C = (ATA)-1

– In other words, unstable if ATA has small values

– More precisely, care if xT(ATA)x is small for any x

• Idea: if part of solution unstable, set answer to 0
– Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

• Handy mathematical technique that has
application to many problems

• Given any m×n matrix A, algorithm to find
matrices U, V, and W such that

A = U W VT

U is m×n and orthonormal

W is n×n and diagonal

V is n×n and orthonormal

SVD

• Treat as black box: code widely available
In Matlab: [U,W,V]=svd(A,0)

T
1

00
00
00























































=























VUA

nw

w


SVD

• The wi are called the singular values of A

• If A is singular, some of the wi will be 0

• In general rank(A) = number of nonzero wi

• SVD is mostly unique (up to permutation of
singular values, or if some wi are equal)

SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

– Using fact that inverse = transpose
for orthogonal matrices

– Since W is diagonal, W-1 also diagonal with
reciprocals of entries of W

SVD and Inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

• This fails when some wi are 0
– It’s supposed to fail – singular matrix

• Pseudoinverse: if wi=0, set 1/wi to 0 (!)
– “Closest” matrix to inverse

– Defined for all (even non-square, singular, etc.)
matrices

– Equal to (ATA)-1AT if ATA invertible

SVD and Least Squares

• Solving Ax=b by least squares

• x=pseudoinverse(A) times b

• Compute pseudoinverse using SVD
– Lets you see if data is singular

– Even if not singular, ratio of max to min singular
values (= condition number) tells you
how stable the solution will be

– Set 1/wi to 0 if wi is small (even if not exactly 0)

SVD and Eigenvectors

• Let A=UWVT, and let xi be ith column of V

• Consider ATA xi:

• So elements of W are sqrt(eigenvalues) and
columns of V are eigenvectors of ATA
– What we wanted for robust least squares fitting!

iiiiii xwwxxx 222T2TTTT

0

0

0

1

0

=























=























===








VVWVVWUWVUVWAA

SVD and Matrix Similarity

• One common definition for the norm of a
matrix is the Frobenius norm:

• Frobenius norm can be computed from SVD

• So changes to a matrix can be evaluated by
looking at changes to singular values

∑∑=
i j

ija 2
F

A

∑=
i

iw 2
F

A

SVD and Matrix Similarity

• Suppose you want to find best rank-k
approximation to A

• Answer: set all but the largest k singular values
to zero

• Can form compact representation by eliminating
columns of U and V corresponding to zeroed wi

SVD and PCA

• Principal Components Analysis (PCA):
approximating a high-dimensional data set
with a lower-dimensional subspace

Original axes

**

*
*
*

*
* *

*

*
*
*
*

*

*

*
*
* *

** *
**

Data points

First principal componentSecond principal component

SVD and PCA

• Data matrix with points as rows, take SVD
– Subtract out mean (“whitening”)

• Columns of Vk are principal components

• Value of wi gives importance of each
component

PCA on Faces: “Eigenfaces”

Average
face

First principal component

Other
components

For all except average,
“gray” = 0,

“white” > 0,
“black” < 0

Using PCA for Recognition

• Store each person as coefficients of projection
onto first few principal components

• Compute projections of target image, compare
to database (“nearest neighbor classifier”)

∑
=

=
max

0
iEigenfaceimage

i

i
ia

Total Least Squares

• One final least squares application

• Fitting a line: vertical vs. perpendicular error

Total Least Squares

• Distance from point to line:

where n is normal vector to line, a is a constant

• Minimize:

an
y

x
d

i

i
i −⋅








=



∑∑











−⋅








==

i i

i

i
i an

y

x
d

2

22 χ

Total Least Squares

• First, let’s pretend we know n, solve for a

• Then

n
y

x
m

a

an
y

x

i i

i

i i

i





⋅







=












−⋅








=

∑

∑

1

2

2χ

n
y

x
an

y

x
d

m
y

i

m
x

i

i

i
i

i

i 
⋅










−

−
=−⋅








=

Σ

Σ

Total Least Squares

• So, let’s define

and minimize












−

−
=








Σ

Σ

m
y

i

m
x

i

i

i

i

i

y

x
y

x
~

~

∑











⋅








i i

i n
y

x
2

~

~


Total Least Squares

• Write as linear system

• Have An=0
– Problem: lots of n are solutions, including n=0

– Standard least squares will, in fact, return n=0

0
~~

~~

~~

33

22

11





=




























y

x

n

n

yx

yx

yx

Constrained Optimization

• Solution: constrain n to be unit length

• So, try to minimize |An|2 subject to |n|2=1

• Expand in eigenvectors ei of ATA:

where the λi are eigenvalues of ATA

() () nnnnn  AAAAA TTT2 ==

()
2
2

2
1

2

2
22

2
11

TT
2211

µµ

µλµλ

µµ

+=

+=

+=

n

nn
n







AA
ee

Constrained Optimization

• To minimize subject to
set µmin = 1, all other µi = 0

• That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue

2
22

2
11 µλµλ + 12

2
2
1 =+ µµ

	Singular Value Decomposition
	Underconstrained Least Squares
	Underconstrained Least Squares
	Underconstrained Least Squares
	Singular Value Decomposition (SVD)
	SVD
	SVD
	SVD and Inverses
	SVD and Inverses
	SVD and Least Squares
	SVD and Eigenvectors
	SVD and Matrix Similarity
	SVD and Matrix Similarity
	SVD and PCA
	SVD and PCA
	PCA on Faces: “Eigenfaces”
	Using PCA for Recognition
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Constrained Optimization
	Constrained Optimization

