Solving Linear Systems:

Iterattve Methods and Sparse Systems

COS 323



Direct vs. Iterative Methods

So far, have looked at direct methods for
solving linear systems
— Predictable number of steps

— No answer until the very end

Alternative: iterative methods
— Start with approximate answer
— Each iteration improves accuracy

— Stop once estimated error below tolerance



Benefits of Iterative Algorithms

Some iterative algorithms designed for accuracy:
— Direct methods subject to roundoff error

— |terate to reduce error to O(g)

Some algorithms produce answer faster
— Most important class: sparse matrix solvers

— Speed depends on # of nonzero elements,
not total # of elements

Today: iterative improvement of accuracy,
solving sparse systems (not necessarily iteratively)



Iterattive Improvement

Suppose you've solved (or think you've solved)
some system Ax=Db

Can check answer by computing residual:
r=b— Ax

computed

If r is small (compared to b), x is accurate

What if it’s not?



Iterattive Improvement

Large residual caused by error in x:

g = X X

correct  “*computed

If we knew the error, could try to improve x:

Xcorrect — Xcomputed T+ e
Solve for error:
AXcomputed T A(Xcorrect = s
AX —Ae=b-r

correct

Ae = r



Iterattive Improvement

So, compute residual, solve for e,
and apply correction to estimate of x

If original system solved using LU,
this is relatively fast (relative to O(n?), that is):

— O(n?) matrix/vector multiplication +
O(n) vector subtraction to solve for r

(
— O(n?) forward/backsubstitution to solve for e
(

— O(n) vector addition to correct estimate of x



Sparse Systems

Many applications require solution of

large linear systems (n = thousands to millions)
— Local constraints or interactions: most entries are 0
— Wasteful to store all n? entries

— Difficult or impossible to use O(n?) algorithms

Goal: solve system with:
— Storage proportional to # of nonzero elements

— Running time << n’



Special Case: Band Diagonal

Last time: tridiagonal (or band diagonal) systems
— Storage O(n): only relevant diagonals

— Time O(n): Gauss-Jordan with bookkeeping



Cyclic Tridiagonal

Interesting extension: cyclic tridiagonal

d; QA Ajg
a'21 a22 a23
a32 a33 a34
X=D
Ay Ay Ay
a'54 a‘55 a56
_a61 a'65 a'66_

Could derive yet another special case algorithm,
but there’s a better way



Updating Inverse

Suppose we have some fast way of finding A™
for some matrix A

Now A changes in a special way:
A* = A+ uv'
for some nx1 vectors u and v

Goal: find a fast way of computing (A*)

— Eventually, a fast way of solving (A*)x = b



Q:

A:

Analogue for Scalars

Knowing 1, how to compute

o o+ [

1 _1(1_ b j
a+pB al 1+%/

?



Sherman-Morrison Formula

A =A+uv' =A(l+A"uv')
(A =+A W) AT

Let x = A tuv’

Note that x* = A 'u v'"A 'u v'

T —Scalar! Callit A

x> =AuAv' = AA UV = Ax



Sherman-Morrison Formula

=N
X(1+x)=x(1+1)

X
—x+m(l+x)_0

X
I+x—m(l )=l

(I —ﬁj(l £x)=1
(I—ﬁj:(ux)l




Sherman-Morrison Formula

A'uv'A'b
1+v' AU

X = (A*)_lb =A'b-

So, to solve (A" )x =b,
ZV'y
1+v'z

solve Ay=hb, Az=uU, X=Yy-—



Applying Sherman-Morrison

| et’s consider

cyclic tridiagonal again:

Take a-

Ay,

a'22 a23

a32 a33
a43

CE

Ay 8ys

45y 855
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65

8, a,
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Applying Sherman-Morrison

Solve Ay=Db, Az=u using special fast algorithm

Applying Sherman-Morrison takes
a couple of dot products

Total: O(n) time
Generalization for several corrections: Woodbury
A =A+UV'
% i £i TA-L Y \v/TA-L
(A=A —AU (1+VTAU)" VTA



More General Sparse Matrices

More generally, we can represent sparse
matrices by noting which elements are nonzero

Critical for Ax and A'x to be efficient:
proportional to # of nonzero elements

— We'll see an algorithm for solving Ax=b
using only these two operations!



Compressed Sparse Row Format

Three arrays

— Values: actual numbers in the matrix

— Cols: column of corresponding entry in values

— Rows: index of first entry in each row

— Example: (zero-based! C/C+ +/Java, not Matlab!)

0

2
0
0

3

0
0
1

2

0
0
2

3

S|
0
3

values 32325123
cols 12303123
rows 03558



Compressed Sparse Row Format

values 32325123
cols 12303123
rows 03558

SN ORI ()

N O O DN
IOO o Ol OJI

T 1
o O N O

Multiplying Ax:

for(i=0;i<n;i++){
outli] = O;
for (j = rowslil; j < rows[i+1]; j++)
outli] += values[j] * x[ cols[j] |;



Solving Sparse Systems

Transform problem to a function minimization!

Solve Ax=Db
= Minimize f(x) = x'Ax — 2b'x

To motivate this, consider 1D:
f(x) = ax? — 2bx
dif =2ax—2b =0
ax = b



Solving Sparse Systems

Preferred method: conjugate gradients

Recall: plain gradient descent has a problem...




Solving Sparse Systems

... that’s solved by conjugate gradients

Walk along direction

Ck+1 7 _gk+1 +ﬂkdk

Polak and Ribiere formula:

_9,.(9cs—90)
gggk

P



Solving Sparse Systems

Easiest to think about A = symmetric

First ingredient: need to evaluate gradient

f(x)=x"Ax—2b"x
Vi (x) = 2(Ax—Db)

As advertised, this only involves A multiplied
by a vector



Solving Sparse Systems

Second ingredient: given point x;, direction d;,
minimize function in that direction

Define m;(t) = f (X +td,)

Minimize m.(t): imi (t1)=0

dt
d”;it(t) —2d.7(Ax,—b)+2td"Ad, = 0
d,' (A% —b)
tmin e T
d. Ad,

Xig =X +tmindi



Solving Sparse Systems

Just a few sparse matrix-vector multiplies
(plus some dot products, etc.) per iteration

For m nonzero entries, each iteration O(max(m,n))

Conjugate gradients may need n iterations for
“perfect” convergence, but often get decent
answer well before then

For non-symmetric matrices: biconjugate gradient
(maintains 2 residuals, requires A'x multiplication)
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