Solving Linear Systems:

Iterattve Methods and Sparse Systems

COS 323

Direct vs. Iterative Methods

So far, have looked at direct methods for
solving linear systems
— Predictable number of steps

— No answer until the very end

Alternative: iterative methods
— Start with approximate answer
— Each iteration improves accuracy

— Stop once estimated error below tolerance

Benefits of Iterative Algorithms

Some iterative algorithms designed for accuracy:
— Direct methods subject to roundoff error

— |terate to reduce error to O(g)

Some algorithms produce answer faster
— Most important class: sparse matrix solvers

— Speed depends on # of nonzero elements,
not total # of elements

Today: iterative improvement of accuracy,
solving sparse systems (not necessarily iteratively)

Iterattive Improvement

Suppose you've solved (or think you've solved)
some system Ax=Db

Can check answer by computing residual:
r=b— Ax

computed

If r is small (compared to b), x is accurate

What if it’s not?

Iterattive Improvement

Large residual caused by error in x:

g = X X

correct “*computed

If we knew the error, could try to improve x:

Xcorrect — Xcomputed T+ e
Solve for error:
AXcomputed T A(Xcorrect = s
AX —Ae=b-r

correct

Ae = r

Iterattive Improvement

So, compute residual, solve for e,
and apply correction to estimate of x

If original system solved using LU,
this is relatively fast (relative to O(n?), that is):

— O(n?) matrix/vector multiplication +
O(n) vector subtraction to solve for r

(
— O(n?) forward/backsubstitution to solve for e
(

— O(n) vector addition to correct estimate of x

Sparse Systems

Many applications require solution of

large linear systems (n = thousands to millions)
— Local constraints or interactions: most entries are 0
— Wasteful to store all n? entries

— Difficult or impossible to use O(n?) algorithms

Goal: solve system with:
— Storage proportional to # of nonzero elements

— Running time << n’

Special Case: Band Diagonal

Last time: tridiagonal (or band diagonal) systems
— Storage O(n): only relevant diagonals

— Time O(n): Gauss-Jordan with bookkeeping

Cyclic Tridiagonal

Interesting extension: cyclic tridiagonal

d; QA Ajg
a'21 a22 a23
a32 a33 a34
X=D
Ay Ay Ay
a'54 a‘55 a56
a61 a'65 a'66

Could derive yet another special case algorithm,
but there’s a better way

Updating Inverse

Suppose we have some fast way of finding A™
for some matrix A

Now A changes in a special way:
A* = A+ uv'
for some nx1 vectors u and v

Goal: find a fast way of computing (A*)

— Eventually, a fast way of solving (A*)x = b

Q:

A:

Analogue for Scalars

Knowing 1, how to compute

o o+ [

1 _1(1_ b j
a+pB al 1+%/

?

Sherman-Morrison Formula

A =A+uv' =A(l+A"uv')
(A =+A W) AT

Let x = A tuv’

Note that x* = A 'u v'"A 'u v'

T —Scalar! Callit A

x> =AuAv' = AA UV = Ax

Sherman-Morrison Formula

=N
X(1+x)=x(1+1)

X
—x+m(l+x)_0

X
I+x—m(l)=l

(I —ﬁj(l £x)=1
(I—ﬁj:(ux)l

Sherman-Morrison Formula

A'uv'A'b
1+v' AU

X = (A*)_lb =A'b-

So, to solve (A")x =b,
ZV'y
1+v'z

solve Ay=hb, Az=uU, X=Yy-—

Applying Sherman-Morrison

| et’s consider

cyclic tridiagonal again:

Take a-

Ay,

a'22 a23

a32 a33
a43

CE

Ay 8ys

45y 855
a

65

8, a,
a21 a22
a32
_a6l
a56

a66 T a61a16_

QD

23

QD

43

QD

34

QD

44

QD

54

QD

45

QD

55

QD

65

Ay _

Applying Sherman-Morrison

Solve Ay=Db, Az=u using special fast algorithm

Applying Sherman-Morrison takes
a couple of dot products

Total: O(n) time
Generalization for several corrections: Woodbury
A =A+UV'
% i £i TA-L Y \v/TA-L
(A=A —AU (1+VTAU)" VTA

More General Sparse Matrices

More generally, we can represent sparse
matrices by noting which elements are nonzero

Critical for Ax and A'x to be efficient:
proportional to # of nonzero elements

— We'll see an algorithm for solving Ax=b
using only these two operations!

Compressed Sparse Row Format

Three arrays

— Values: actual numbers in the matrix

— Cols: column of corresponding entry in values

— Rows: index of first entry in each row

— Example: (zero-based! C/C+ +/Java, not Matlab!)

0

2
0
0

3

0
0
1

2

0
0
2

3

S|
0
3

values 32325123
cols 12303123
rows 03558

Compressed Sparse Row Format

values 32325123
cols 12303123
rows 03558

SN ORI ()

N O O DN
IOO o Ol OJI

T 1
o O N O

Multiplying Ax:

for(i=0;i<n;i++){
outli] = O;
for (j = rowslil; j < rows[i+1]; j++)
outli] += values[j] * x[cols[j] |;

Solving Sparse Systems

Transform problem to a function minimization!

Solve Ax=Db
= Minimize f(x) = x'Ax — 2b'x

To motivate this, consider 1D:
f(x) = ax? — 2bx
dif =2ax—2b =0
ax = b

Solving Sparse Systems

Preferred method: conjugate gradients

Recall: plain gradient descent has a problem...

Solving Sparse Systems

... that’s solved by conjugate gradients

Walk along direction

Ck+1 7 _gk+1 +ﬂkdk

Polak and Ribiere formula:

_9,.(9cs—90)
gggk

P

Solving Sparse Systems

Easiest to think about A = symmetric

First ingredient: need to evaluate gradient

f(x)=x"Ax—2b"x
Vi (x) = 2(Ax—Db)

As advertised, this only involves A multiplied
by a vector

Solving Sparse Systems

Second ingredient: given point x;, direction d;,
minimize function in that direction

Define m;(t) = f (X +td,)

Minimize m.(t): imi (t1)=0

dt
d”;it(t) —2d.7(Ax,—b)+2td"Ad, = 0
d,' (A% —b)
tmin e T
d. Ad,

Xig =X +tmindi

Solving Sparse Systems

Just a few sparse matrix-vector multiplies
(plus some dot products, etc.) per iteration

For m nonzero entries, each iteration O(max(m,n))

Conjugate gradients may need n iterations for
“perfect” convergence, but often get decent
answer well before then

For non-symmetric matrices: biconjugate gradient
(maintains 2 residuals, requires A'x multiplication)

	Solving Linear Systems:�Iterative Methods and Sparse Systems
	Direct vs. Iterative Methods
	Benefits of Iterative Algorithms
	Iterative Improvement
	Iterative Improvement
	Iterative Improvement
	Sparse Systems
	Special Case: Band Diagonal
	Cyclic Tridiagonal
	Updating Inverse
	Analogue for Scalars
	Sherman-Morrison Formula
	Sherman-Morrison Formula
	Sherman-Morrison Formula
	Applying Sherman-Morrison
	Applying Sherman-Morrison
	More General Sparse Matrices
	Compressed Sparse Row Format
	Compressed Sparse Row Format
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems

