
Solving Linear Systems:
Iterative Methods and Sparse Systems

COS 323



Direct vs. Iterative Methods

• So far, have looked at direct methods for
solving linear systems
– Predictable number of steps

– No answer until the very end

• Alternative: iterative methods
– Start with approximate answer

– Each iteration improves accuracy

– Stop once estimated error below tolerance



Benefits of Iterative Algorithms

• Some iterative algorithms designed for accuracy:
– Direct methods subject to roundoff error

– Iterate to reduce error to O(ε )

• Some algorithms produce answer faster
– Most important class: sparse matrix solvers

– Speed depends on # of nonzero elements,
not total # of elements

• Today: iterative improvement of accuracy,
solving sparse systems (not necessarily iteratively)



Iterative Improvement

• Suppose you’ve solved (or think you’ve solved) 
some system Ax=b

• Can check answer by computing residual:
r = b – Axcomputed

• If r is small (compared to b), x is accurate

• What if it’s not?



Iterative Improvement

• Large residual caused by error in x:
e = xcorrect – xcomputed

• If we knew the error, could try to improve x:
xcorrect = xcomputed + e

• Solve for error:
Axcomputed = A(xcorrect – e) = b – r

Axcorrect – Ae = b – r
Ae = r



Iterative Improvement

• So, compute residual, solve for e,
and apply correction to estimate of x

• If original system solved using LU,
this is relatively fast (relative to O(n3), that is):
– O(n2) matrix/vector multiplication +

O(n) vector subtraction to solve for r

– O(n2) forward/backsubstitution to solve for e

– O(n) vector addition to correct estimate of x



Sparse Systems

• Many applications require solution of
large linear systems (n = thousands to millions)
– Local constraints or interactions: most entries are 0

– Wasteful to store all n2 entries

– Difficult or impossible to use O(n3) algorithms

• Goal: solve system with:
– Storage proportional to # of nonzero elements

– Running time << n3



Special Case: Band Diagonal

• Last time: tridiagonal (or band diagonal) systems
– Storage O(n): only relevant diagonals

– Time O(n): Gauss-Jordan with bookkeeping



Cyclic Tridiagonal

• Interesting extension: cyclic tridiagonal

• Could derive yet another special case algorithm,
but there’s a better way
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Updating Inverse

• Suppose we have some fast way of finding A-1

for some matrix A

• Now A changes in a special way:
A* = A + uvT

for some n×1 vectors u and v

• Goal: find a fast way of computing (A*)-1

– Eventually, a fast way of solving (A*) x = b



Analogue for Scalars
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Sherman-Morrison Formula
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Sherman-Morrison Formula
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Sherman-Morrison Formula
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Applying Sherman-Morrison

• Let’s consider
cyclic tridiagonal again:

• Take
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Applying Sherman-Morrison

• Solve  Ay=b,  Az=u  using special fast algorithm

• Applying Sherman-Morrison takes
a couple of dot products

• Total: O(n) time

• Generalization for several corrections: Woodbury
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More General Sparse Matrices

• More generally, we can represent sparse 
matrices by noting which elements are nonzero

• Critical for Ax and ATx to be efficient:
proportional to # of nonzero elements
– We’ll see an algorithm for solving Ax=b

using only these two operations!



Compressed Sparse Row Format

• Three arrays
– Values: actual numbers in the matrix

– Cols: column of corresponding entry in values

– Rows: index of first entry in each row

– Example: (zero-based!  C/C++/Java, not Matlab!)
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Compressed Sparse Row Format

• Multiplying Ax:

for (i = 0; i < n; i++) {
out[i] = 0;
for (j = rows[i]; j < rows[i+1]; j++)

out[i] += values[j] * x[ cols[j] ];
}





















3210

0000

5002

3230 values 3 2 3 2 5 1 2 3
cols 1 2 3 0 3 1 2 3
rows 0 3 5 5 8



Solving Sparse Systems

• Transform problem to a function minimization!

Solve Ax=b
⇒ Minimize f(x) = xTAx – 2bTx

• To motivate this, consider 1D:
f(x) = ax2 – 2bx

df/dx = 2ax – 2b = 0
ax = b



Solving Sparse Systems

• Preferred method: conjugate gradients

• Recall: plain gradient descent has a problem…



Solving Sparse Systems

• … that’s solved by conjugate gradients

• Walk along direction

• Polak and Ribiere formula:
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Solving Sparse Systems

• Easiest to think about A = symmetric

• First ingredient: need to evaluate gradient

• As advertised, this only involves A multiplied
by a vector
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Solving Sparse Systems

• Second ingredient: given point xi, direction di,
minimize function in that direction
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Solving Sparse Systems

• Just a few sparse matrix-vector multiplies
(plus some dot products, etc.) per iteration

• For m nonzero entries, each iteration O(max(m,n))

• Conjugate gradients may need n iterations for
“perfect” convergence, but often get decent 
answer well before then

• For non-symmetric matrices: biconjugate gradient
(maintains 2 residuals, requires ATx multiplication)


	Solving Linear Systems:�Iterative Methods and Sparse Systems
	Direct vs. Iterative Methods
	Benefits of Iterative Algorithms
	Iterative Improvement
	Iterative Improvement
	Iterative Improvement
	Sparse Systems
	Special Case: Band Diagonal
	Cyclic Tridiagonal 
	Updating Inverse
	Analogue for Scalars
	Sherman-Morrison Formula
	Sherman-Morrison Formula
	Sherman-Morrison Formula
	Applying Sherman-Morrison
	Applying Sherman-Morrison
	More General Sparse Matrices
	Compressed Sparse Row Format
	Compressed Sparse Row Format
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems
	Solving Sparse Systems

