r &
Rl N
L i l,‘,’.!.
il- =N
™ e] ¢

Linear Systems

A X A X, + QX+ = bl
8y X, + 8,0X, + 850X, +0- =D,

Linear Systems

Solve Ax=Db, where A is an nxn matrix and
b is an nx1 column vector

Can also talk about non-square systems where
A is mxn, b is mx1, and x is nx1

— Overdetermined if m>n:
“more equations than unknowns”

— Underdetermined if n>m:
“more unknowns than equations”
Can look for best solution using least squares

Singular Systems

A is singular if some row is
linear combination of other rows

Singular systems can be underdetermined:
2%, +3X, =5
4x, +6x, =10

or inconsistent:

2%, +3X, =5
4x, +6x, =11

Inverting a Matrix

Usually not a good idea to compute x=A"b
— Inefficient

— Prone to roundoff error

In fact, compute inverse using linear solver

— Solve Ax;=b, where b, are columns of identity,
Xx. are columns of inverse

— Many solvers can solve several R.H.S. at once

Gauss-Jordan Elimination

Fundamental operations:

1. Replace one equation with linear combination
of other equations

2. Interchange two equations

3. Re-label two variables
Combine to reduce to trivial system

Simplest variant only uses #1 operations,
but get better stability by adding
#2 (partial pivoting) or #2 and #3 (full pivoting)

Gauss-Jordan Elimination

Solve:
2% +3X, =1
4X, +9%, =13

Only care about numbers — form “tableau” or
“augmented matrix”:

Lol e,
4 5 |13

Gauss-Jordan -

Given:

4

5

Hlimination

13

Goal: reduce this to trivial system

and read off answer from right column

Gauss-Jordan Elimination

4 5

13

Basic operation 1: replace any row by
linear combination with any other row

Here, replace row1 with '/, * row1 + 0 * row2

[l 2|
s i)

Gauss-Jordan -

El
4

7
5

Hlimination

%_
13

Replace row2 with row2 — 4 * row’

Negate row?2

1

7
-1

i

Gauss-Jordan Elimination

S
(o e

Replace row1 with row1 — 3/, * row2

=0
[0

2
1

Read off solution: x; = 2, x, =1

Gauss-Jordan Elimination

For each row i:
— Multiply row i by 1/a;
— For each other row j:

* Add —a; times row i to row j

At the end, left part of matrix is identity,
answer in right part

Can solve any number of R.H.S. simultaneously

Pivoting

Consider this system:

Immediately run into problem:
algorithm wants us to divide by zero!

More subtle version:

0001 #alt?
Dt g

Pivoting

Conclusion: small diagonal elements bad

Remedy: swap in larger element from
somewhere else

Partial Pivoting

Fopees D55
2 3

Swap rows 1 and 2:

25003 3
e o
Now continue:
Palaicey sl Bl
[l o

Full Pivoting

Swap largest element onto diagonal by
swapping rows 1 and 2 and columns 1 and 2:

feraey)
[l

8
2

Critical: when swapping columns, must
remember to swap results!

Full Pivoting

e e

1 0]2 " Swap results
_ 1 and 2
A3 %
RS]

e =0

HEEE g

Full pivoting more stable, but only slightly

Operation Count

For one R.H.S., how many operations?

For each of n rows:

— Do n times:
e For each of n+1 columns:

— One add, one multiply

Total = n’+n? multiplies, same # of adds

Asymptotic behavior: when n is large,
dominated by n°

Faster Algorithms

Our goal is an algorithm that does this in
1/;n° operations, and does not require
all R.H.S. to be known at beginning

Before we see that, let’s look at a few
special cases that are even faster

Tridiagonal Systems

Common special case:

a0 20 b, |
a’21 a22 a23 O b2
O a32 a33 a'34 b3
O iasa et b,

Only main diagonal + 1 above and 1 below

Solving Tridiagonal Systems

When solving using Gauss-Jordan:

— Constant # of multiplies/adds in each row

— Each row only affects 2 others

A a0 0 of
a21 a22 a23 O b2
O a32 a33 a'34 b3
Qv R ariai iy, b,

Running Time

2n loops, 4 multiply/adds per loop
(assuming correct bookkeeping)

This running time has a fundamentally different
dependence on n: linear instead of cubic

— Can say that tridiagonal algorithm is O(n) while
Gauss-Jordan is O(n?3)

Bi1g-O Notation

Informally, O(n°?) means that the dominant term
for large n is cubic

More precisely, there exist a ¢ and n, such that
running time < c n’
if
n > n,
This type of asymptotic analysis is often used
to characterize different algorithms

Triangular Systems

Another special case: A is lower-triangular

BB RN s0ME S e P
b

a3 1 a3 2 a33 0

a'21 a'22

N

w

dy 8y Y43 8y b

R

Solve by forward substitution

Triangular Systems

Ay
a'21

a31

a'41

0

0

0
0

Triangular Systems

Solve by forward substitution

Ay
a'21

a31

a'41

0

0 O

0 O

i)

dy3 Ay
o= bz — 94X

Triangular Systems

Solve by forward substitution

Ay
a'21

a31

a'41

0

Xy =

0 O
0 O
i)

bs iz a31X1 7 a32X2

a33

Triangular Systems

If A is upper triangular, solve by backsubstitution
a; A, A a, & | b
e R s b e TR o)
DRl Fas slida e ama i el
O) ey s e v
bl g s
b

a'55

Triangular Systems

If A is upper triangular, solve by backsubstitution
a; A, A a, & | b
e R s b e TR o)
DRl Fas slida e ama i el
Pisse()=sne)isdiea aaza e &)
bl g s

Triangular Systems

Both of these special cases can be solved in
O(n?) time

This motivates a factorization approach to
solving arbitrary systems:
— Find a way of writing A as LU, where L and U are
both triangular
AX=lisronslddx Sty =lsEee— Sl I =y

— Time for factoring matrix dominates computation

Cholesky Decomposition

For symmetric matrices, choose U=L'

Perform decomposition

Ay
Ay,
A3

Ax=Db

|21 |22
|31 |32
=0 =

Ay,
A3

Cholesky Decomposition

dp 3 I11
dy, Gy |= |21
dyz dag _|31

=ay

Ll =2,

k5, =@y,

2 2
|21 +|22 = dy,

|21|31 o |22I32 = dy3

0 I11 |21
00 I,
|0 O
|11:\/311
[
21—|
11
oy
31 |
11
2
|22:\/a22 |21
| Ayy |21|31
5

Ay
Ay,
A3

Cholesky Decomposition

a‘33 _I3l I32 I33__ O 0
-1]
I|| =4/ _lek
k=1

Cholesky Decomposition

This fails if it requires taking square root of a
negative number

Need another condition on A: positive definite

Foranyv, vAv >0

(Equivalently, all positive eigenvalues)

Cholesky Decomposition

Running time turns out to be '/.n’

— Still cubic, but much lower constant

Result: this is preferred method for solving
symmetric positive definite systems

LU Decomposition

Again, factor A into LU, where
L is lower triangular and U is upper triangular
AX=Db
LUx=Db
Ly=Db
Ux=y
Last 2 steps in O(n?) time, so total time
dominated by decomposition

Doolittle Factorization

More unknowns than equations!

Let all |.=1
(Could also take all u;=1 — Crout’s method)

Doolittle Factorization

8p 8] |l b 10 0
U, =3,
Ay
|21u11 =d, = |21 el
U,
dsy
|31u11 =d; = I31 IR
U,
U, =4a;,
|21u12 Uy =a,, = Uy=4a,,— |21u12
aaz il |31u12

I31“12 3 I32“22 =d; = |32 =
U,,

Doolittle Factorization

d; dp Y 1 0 Ofu; U
dy; Yy Gy |= I21 1 010 wuy

| %5 83 G b, 1, 1]0 0

Fori = 1..n
— For | = 1..i

— Forj = i+1..n

Doolittle Factorization

Interesting note: # of outputs = # of inputs,
algorithm only refers to elements not output yet
— Can do this in-place! r i

— Algorithm replaces A with matrix

of | and u values, 1s are implied

— Resulting matrix must be interpreted in a special way:
not a regular matrix

— Can rewrite forward/backsubstitution routines to use
this “packed” [-u matrix

LU Decomposition

Running time is '/5n°
— Only a factor of 2 slower than symmetric case

— This is the preferred general method for
solving linear equations

Pivoting very important
— Partial pivoting is sufficient, and widely implemented

— LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails...)

Running Time — Is O(n°) the Limit?

How fast is matrix multiplication?

(Cll Clzj = (all &, j(bll blzj
Cai Cp &y 8y \Dy by
Ciy = &40y, +a,0,,

Cip = &40y, +34,0,,

Cop = 8yi0y; + 85,0,

Cp = a21b12 T azzbzz

8 multiples, 4 adds, right?
(In general n°> multiplies and n#(n-1) adds...)

Running Time — Is O(n3) the Limit?

Ml T (all T a22)(b11 + bzz)
M W (a21 + a22)b11

(Cll Clzj o (ail &, j(bll blzj M, =a; (0, —Db,,)

Car Cp & 8y \Dy by M, =a,(b,—b,)

M; = (all T a12)b22

My = (a21 i a11)(b11 T blz)
M; = (a12 o azz)(bz1 o bzz)
C,=M,+M,-M.:+M,
C, =M, +M;
C,,=M,+M,

Volker Strassen C,,=M,—M,+M, +M,

Strassen’s method [1969]

Running Time — Is O(n3) the Limit?

Ml T (a11 T a22)(b11 + bzz)
M D (a21 + a22)b11

(Cll Clzj o (an alzj(bll blzj M, =a; (0, —Db,,)
Cai Cp &y 8y \Dy by M, =a,(b,—b,)
M; = (a11 T alz)bzz
My = (3-21 % a11)(b11 T blz)

Strassen’s method [1969]

Uses only 7 multiplies M. = (a,—a,,)(b, +b,,)
(and a whole bunch of adds) ¢, =M, +M,—M_ + M,
C,=M,+M,

Can be applied recursively!
C,,=M,+M,

C,, =M, —M,+M,+M,

Running Time — Is O(n°) the Limit?

Recursive application for 4 half-size submatrices
needs 7 half-size matrix multiplies

Asymptotic running time is O(n"*%") = O(n*?)

— Only worth it for large n, because of big

constant factors (all those additions...)

— Still, practically useful for n > hundreds or thousands
Current state of the art: Coppersmith-Winograd
2.376...

)

algorithm achieves O(n

— Not used in practice

Running Time — Is O(n°) the Limit?

Similar sub-cubic algorithms for inverse,
determinant, LU, etc.

— Most “cubic” linear-algebra problems aren’t!

Major open question: what is the limit?
— Hypothesis: O(n?) or O(n? log n)

	Linear Systems
	Linear Systems
	Linear Systems
	Singular Systems
	Inverting a Matrix
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Pivoting
	Pivoting
	Partial Pivoting
	Full Pivoting
	Full Pivoting
	Operation Count
	Faster Algorithms
	Tridiagonal Systems
	Solving Tridiagonal Systems
	Running Time
	Big-O Notation
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	LU Decomposition
	Doolittle Factorization
	Doolittle Factorization
	Doolittle Factorization
	Doolittle Factorization
	LU Decomposition
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?

