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Linear Systems

A X A X, + QX+ = bl
8y X, + 8,0X, + 850X, +0- =D,




Linear Systems

Solve Ax=Db, where A is an nxn matrix and
b is an nx1 column vector

Can also talk about non-square systems where
A is mxn, b is mx1, and x is nx1

— Overdetermined if m>n:
“more equations than unknowns”

— Underdetermined if n>m:
“more unknowns than equations”
Can look for best solution using least squares



Singular Systems

A is singular if some row is
linear combination of other rows

Singular systems can be underdetermined:
2%, +3X, =5
4x, +6x, =10

or inconsistent:

2%, +3X, =5
4x, +6x, =11



Inverting a Matrix

Usually not a good idea to compute x=A"b
— Inefficient

— Prone to roundoff error

In fact, compute inverse using linear solver

— Solve Ax;=b, where b, are columns of identity,
Xx. are columns of inverse

— Many solvers can solve several R.H.S. at once



Gauss-Jordan Elimination

Fundamental operations:

1. Replace one equation with linear combination
of other equations

2. Interchange two equations

3. Re-label two variables
Combine to reduce to trivial system

Simplest variant only uses #1 operations,
but get better stability by adding
#2 (partial pivoting) or #2 and #3 (full pivoting)



Gauss-Jordan Elimination

Solve:
2% +3X, =1
4X, +9%, =13

Only care about numbers — form “tableau” or
“augmented matrix”:

Lol e,
4 5 |13




Gauss-Jordan -

Given:

4

5

Hlimination

13

Goal: reduce this to trivial system

and read off answer from right column



Gauss-Jordan Elimination

4 5

13

Basic operation 1: replace any row by
linear combination with any other row

Here, replace row1 with '/, * row1 + 0 * row2

[l 2|
s i)




Gauss-Jordan -

El
4

7
5

Hlimination

%_
13

Replace row2 with row2 — 4 * row’

Negate row?2

1

7
-1

i




Gauss-Jordan Elimination

S
(o e

Replace row1 with row1 — 3/, * row2

=0
[0

2
1

Read off solution: x; = 2, x, =1



Gauss-Jordan Elimination

For each row i:
— Multiply row i by 1/a;
— For each other row j:

* Add —a; times row i to row j

At the end, left part of matrix is identity,
answer in right part

Can solve any number of R.H.S. simultaneously



Pivoting

Consider this system:

Immediately run into problem:
algorithm wants us to divide by zero!

More subtle version:

0001 #alt?
Dt g




Pivoting

Conclusion: small diagonal elements bad

Remedy: swap in larger element from
somewhere else



Partial Pivoting

Fopees D55
2 3

Swap rows 1 and 2:

25003 3
e o
Now continue:
Palaicey sl Bl
[l o




Full Pivoting

Swap largest element onto diagonal by
swapping rows 1 and 2 and columns 1 and 2:

feraey)
[l

8
2

Critical: when swapping columns, must
remember to swap results!



Full Pivoting

e e

1 0 ]2 " Swap results
_ 1 and 2
A3 %
RS ]

e =0

HEEE g

Full pivoting more stable, but only slightly



Operation Count

For one R.H.S., how many operations?

For each of n rows:

— Do n times:
e For each of n+1 columns:

— One add, one multiply

Total = n’+n? multiplies, same # of adds

Asymptotic behavior: when n is large,
dominated by n°



Faster Algorithms

Our goal is an algorithm that does this in
1/;n° operations, and does not require
all R.H.S. to be known at beginning

Before we see that, let’s look at a few
special cases that are even faster



Tridiagonal Systems

Common special case:

a0 20 b, |
a’21 a22 a23 O b2
O a32 a33 a'34 b3
O iasa et b,

Only main diagonal + 1 above and 1 below



Solving Tridiagonal Systems

When solving using Gauss-Jordan:

— Constant # of multiplies/adds in each row

— Each row only affects 2 others

A a0 0 of
a21 a22 a23 O b2
O a32 a33 a'34 b3
Qv R ariai iy, b,



Running Time

2n loops, 4 multiply/adds per loop
(assuming correct bookkeeping)

This running time has a fundamentally different
dependence on n: linear instead of cubic

— Can say that tridiagonal algorithm is O(n) while
Gauss-Jordan is O(n?3)



Bi1g-O Notation

Informally, O(n°?) means that the dominant term
for large n is cubic

More precisely, there exist a ¢ and n, such that
running time < c n’
if
n > n,
This type of asymptotic analysis is often used
to characterize different algorithms



Triangular Systems

Another special case: A is lower-triangular

BB RN s0ME S e P
b

a3 1 a3 2 a33 0

a'21 a'22

N

w

dy 8y Y43 8y b

R




Solve by forward substitution

Triangular Systems

Ay
a'21

a31

a'41

0

0

0
0




Triangular Systems

Solve by forward substitution

Ay
a'21

a31

a'41

0

0 O

0 O

i)

dy3 Ay
o= bz — 94X




Triangular Systems

Solve by forward substitution

Ay
a'21

a31

a'41

0

Xy =

0 O
0 O
i)

bs iz a31X1 7 a32X2

a33




Triangular Systems

If A is upper triangular, solve by backsubstitution
a; A, A a, & | b
e R s b e TR o)
DRl Fas slida e ama i el
O ) ey s e v
bl g s
b

a'55



Triangular Systems

If A is upper triangular, solve by backsubstitution
a; A, A a, & | b
e R s b e TR o)
DRl Fas slida e ama i el
Pisse()=sne)isdiea aaza e &)
bl g s




Triangular Systems

Both of these special cases can be solved in
O(n?) time

This motivates a factorization approach to
solving arbitrary systems:
— Find a way of writing A as LU, where L and U are
both triangular
AX=lisronslddx Sty =lsEee— Sl I =y

— Time for factoring matrix dominates computation



Cholesky Decomposition

For symmetric matrices, choose U=L'

Perform decomposition

Ay
Ay,
A3

Ax=Db

|21 |22
|31 |32
=0 =




Ay,
A3

Cholesky Decomposition

dp 3 I11
dy, Gy |= |21
dyz  dag _|31

=ay

Ll =2,

k5, =@y,

2 2
|21 +|22 = dy,

|21|31 o |22I32 = dy3

0 I11 |21
00 I,
|0 O
|11:\/311
[
21—|
11
oy
31 |
11
2
|22:\/a22 |21
| Ayy |21|31
5




Ay
Ay,
A3

Cholesky Decomposition

a‘33 _I3l I32 I33__ O 0
-1 ]
I|| =4/ _lek
k=1




Cholesky Decomposition

This fails if it requires taking square root of a
negative number

Need another condition on A: positive definite

Foranyv, vAv >0

(Equivalently, all positive eigenvalues)



Cholesky Decomposition

Running time turns out to be '/.n’

— Still cubic, but much lower constant

Result: this is preferred method for solving
symmetric positive definite systems



LU Decomposition

Again, factor A into LU, where
L is lower triangular and U is upper triangular
AX=Db
LUx=Db
Ly=Db
Ux=y
Last 2 steps in O(n?) time, so total time
dominated by decomposition



Doolittle Factorization

More unknowns than equations!

Let all |.=1
(Could also take all u;=1 — Crout’s method)




Doolittle Factorization

8p 8] |l b 10 0
U, =3,
Ay
|21u11 =d, = |21 el
U,
dsy
|31u11 =d; = I31 IR
U,
U, =4a;,
|21u12 Uy =a,, = Uy=4a,,— |21u12
aaz il |31u12

I31“12 3 I32“22 =d; = |32 =
U,,




Doolittle Factorization

d; dp Y 1 0 Ofu; U
dy; Yy Gy |= I21 1 010 wuy

| %5 83 G b, 1, 1]0 0

Fori = 1..n
— For | = 1..i

— Forj = i+1..n




Doolittle Factorization

Interesting note: # of outputs = # of inputs,
algorithm only refers to elements not output yet
— Can do this in-place! r i

— Algorithm replaces A with matrix

of | and u values, 1s are implied

— Resulting matrix must be interpreted in a special way:
not a regular matrix

— Can rewrite forward/backsubstitution routines to use
this “packed” [-u matrix



LU Decomposition

Running time is '/5n°
— Only a factor of 2 slower than symmetric case

— This is the preferred general method for
solving linear equations

Pivoting very important
— Partial pivoting is sufficient, and widely implemented

— LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails...)



Running Time — Is O(n°) the Limit?

How fast is matrix multiplication?

(Cll Clzj = (all &, j(bll blzj
Cai Cp &y 8y \Dy by
Ciy = &40y, +a,0,,

Cip = &40y, +34,0,,

Cop = 8yi0y; + 85,0,

Cp = a21b12 T azzbzz

8 multiples, 4 adds, right?
(In general n°> multiplies and n#(n-1) adds...)



Running Time — Is O(n3) the Limit?

Ml T (all T a22)(b11 + bzz)
M W (a21 + a22)b11

(Cll Clzj o (ail &, j(bll blzj M, =a; (0, —Db,,)

Car Cp & 8y \Dy by M, =a,(b,—b,)

M; = (all T a12)b22

My = (a21 i a11)(b11 T blz)
M; = (a12 o azz)(bz1 o bzz)
C,=M,+M,-M.:+M,
C, =M, +M;
C,,=M,+M,

Volker Strassen C,,=M,—M,+M, +M,

Strassen’s method [1969]




Running Time — Is O(n3) the Limit?

Ml T (a11 T a22)(b11 + bzz)
M D (a21 + a22)b11

(Cll Clzj o (an alzj(bll blzj M, =a; (0, —Db,,)
Cai Cp &y 8y \Dy by M, =a,(b,—b,)
M; = (a11 T alz)bzz
My = (3-21 % a11)(b11 T blz)

Strassen’s method [1969]

Uses only 7 multiplies M. = (a,—a,,)(b, +b,,)
(and a whole bunch of adds) ¢, =M, +M,—M_ + M,
C,=M,+M,

Can be applied recursively!
C,,=M,+M,

C,, =M, —M,+M,+M,



Running Time — Is O(n°) the Limit?

Recursive application for 4 half-size submatrices
needs 7 half-size matrix multiplies

Asymptotic running time is O(n"*%") = O(n*?)

— Only worth it for large n, because of big

constant factors (all those additions...)

— Still, practically useful for n > hundreds or thousands
Current state of the art: Coppersmith-Winograd
2.376...

)

algorithm achieves O(n

— Not used in practice



Running Time — Is O(n°) the Limit?

Similar sub-cubic algorithms for inverse,
determinant, LU, etc.

— Most “cubic” linear-algebra problems aren’t!

Major open question: what is the limit?
— Hypothesis: O(n?) or O(n? log n)
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