
Optimization

COS 323



Ingredients

• Objective function

• Variables

• Constraints

Find values of the variables
that minimize or maximize the objective function

while satisfying the constraints



Different Kinds of Optimization

Figure from: Optimization Technology Center
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/



Different Optimization Techniques

• Algorithms have very different flavor depending 
on specific problem
– Closed form vs. numerical vs. discrete

– Local vs. global minima

– Running times ranging from O(1) to NP-hard

• Today:
– Focus on continuous numerical methods



Optimization in 1-D

• Look for analogies to bracketing in root-finding

• What does it mean to bracket a minimum?

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))
xleft < xmid < xright
f(xmid) < f(xleft)
f(xmid) < f(xright)



Optimization in 1-D

• Once we have these properties, there is at least
one local minimum between xleft and xright

• Establishing bracket initially:
– Given xinitial, increment
– Evaluate f(xinitial), f(xinitial+increment)
– If decreasing, step until find an increase
– Else, step in opposite direction until find an increase
– Grow increment (by a constant factor) at each step

• For maximization: substitute –f for f



Optimization in 1-D

• Strategy: evaluate function at some xnew

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))
(xnew, f(xnew))



Optimization in 1-D

• Strategy: evaluate function at some xnew

– Here, new “bracket” points are xnew, xmid, xright

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))
(xnew, f(xnew))



Optimization in 1-D

• Strategy: evaluate function at some xnew

– Here, new “bracket” points are xleft, xnew, xmid

(xleft, f(xleft))

(xright, f(xright))

(xmid, f(xmid))(xnew, f(xnew))



Optimization in 1-D

• Unlike with root-finding, can’t always guarantee 
that interval will be reduced by a factor of 2

• Let’s find the optimal place for xmid, relative to 
left and right, that will guarantee same factor of 
reduction regardless of outcome



Optimization in 1-D

if f(xnew) < f(xmid)
new interval = α

else
new interval = 1–α2

α

α2



Golden Section Search

• To assure same interval, want α = 1–α2

• So,

• This is the “golden ratio” = 0.618…

• So, interval decreases by 30% per iteration
– Linear convergence
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Error Tolerance

• Around minimum, derivative = 0, so

• Rule of thumb: pointless to ask for more 
accuracy than sqrt(ε )
– Can use double precision if you want a single-

precision result (and/or have single-precision data)
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Faster 1-D Optimization

• Trade off super-linear convergence for
worse robustness
– Combine with Golden Section search for safety

• Usual bag of tricks:
– Fit parabola through 3 points, find minimum

– Compute derivatives as well as positions, fit cubic

– Use second derivatives: Newton



Newton’s Method



Newton’s Method



Newton’s Method



Newton’s Method



Newton’s Method

• At each step:

• Requires 1st and 2nd derivatives

• Quadratic convergence
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Multi-Dimensional Optimization

• Important in many areas
– Fitting a model to measured data

– Finding best design in some parameter space

• Hard in general
– Weird shapes: multiple extrema, saddles,

curved or elongated valleys, etc.

– Can’t bracket (but there are “trust region” methods)

• In general, easier than rootfinding
– Can always walk “downhill”



Newton’s Method in
Multiple Dimensions

• Replace 1st derivative with gradient,
2nd derivative with Hessian
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Newton’s Method in
Multiple Dimensions

• Replace 1st derivative with gradient,
2nd derivative with Hessian

• So,

• Tends to be extremely fragile unless function 
very smooth and starting close to minimum
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Steepest Descent Methods

• What if you can’t / don’t want to
use 2nd derivative?

• “Quasi-Newton” methods estimate Hessian

• Alternative: walk along (negative of) gradient…
– Perform 1-D minimization along line passing through 

current point in the direction of the gradient

– Once done, re-compute gradient, iterate



Steepest Descent



Problem With Steepest Descent



Conjugate Gradient Methods

• Idea: avoid “undoing” minimization that’s 
already been done

• Walk along direction

• Polak and Ribiere formula:
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Conjugate Gradient Methods

• Conjugate gradient implicitly obtains 
information about Hessian

• For quadratic function in n dimensions, gets 
exact solution in n steps (ignoring roundoff error)

• Works well in practice…



Value-Only Methods in Multi-Dimensions

• If can’t evaluate gradients, life is hard

• Can use approximate (numerically evaluated) 
gradients:
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Generic Optimization Strategies

• Uniform sampling:
– Cost rises exponentially with # of dimensions

• Compass search:
– Try a step along each coordinate in turn

– If can’t find a lower value, halve step size



Generic Optimization Strategies

• Simulated annealing:
– Maintain a “temperature” T

– Pick random direction d, and try a step of size 
dependent on T

– If value lower than current, accept

– If value higher than current, accept with 
probability ~ exp((f(x) – f(x’))/T)

– “Annealing schedule” – how fast does T decrease?

• Slow but robust: can avoid non-global minima



Downhill Simplex Method (Nelder-Mead)

• Keep track of n+1 points in n dimensions
– Vertices of a simplex (triangle in 2D

tetrahedron in 3D, etc.)

• At each iteration: simplex can move,
expand, or contract
– Sometimes known as amoeba method:

simplex “oozes” along the function



Downhill Simplex Method (Nelder-Mead)

• Basic operation: reflection

worst point
(highest function value)

location probed by
reflection step



Downhill Simplex Method (Nelder-Mead)

• If reflection resulted in best (lowest) value so far,
try an expansion

• Else, if reflection helped at all, keep it

location probed by
expansion step



Downhill Simplex Method (Nelder-Mead)

• If reflection didn’t help (reflected point still worst) 
try a contraction

location probed by
contration step



Downhill Simplex Method (Nelder-Mead)

• If all else fails shrink the simplex around
the best point



Downhill Simplex Method (Nelder-Mead)

• Method fairly efficient at each iteration
(typically 1-2 function evaluations)

• Can take lots of iterations

• Somewhat flakey – sometimes needs restart
after simplex collapses on itself, etc.

• Benefits: simple to implement, doesn’t need 
derivative, doesn’t care about function 
smoothness, etc.



Rosenbrock’s Function

• Designed specifically for testing
optimization techniques

• Curved, narrow valley
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Constrained Optimization

• Equality constraints: optimize f(x)
subject to gi(x)=0

• Method of Lagrange multipliers: convert to a 
higher-dimensional problem

• Minimize                         w.r.t.∑+ )()( xgxf iiλ );( 11 knxx λλ 



Constrained Optimization

• Inequality constraints are harder…

• If objective function and constraints all linear, 
this is “linear programming”

• Observation: minimum must lie at corner of 
region formed by constraints

• Simplex method: move from vertex to vertex, 
minimizing objective function



Constrained Optimization

• General “nonlinear programming” hard

• Algorithms for special cases (e.g. quadratic)



Global Optimization

• In general, can’t guarantee that you’ve found 
global (rather than local) minimum

• Some heuristics:
– Multi-start: try local optimization from

several starting positions

– Very slow simulated annealing

– Use analytical methods (or graphing) to determine 
behavior, guide methods to correct neighborhoods
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