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Ingredients

Objective function
Variables

Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints



Ditterent Kinds of Optimization

Integer

Programming

Continnons

Of:-!f mization

Figure from: Optimization Technology Center
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/



Ditterent Optimization Techniques

Algorithms have very different flavor depending
on specific problem

— Closed form vs. numerical vs. discrete

— Local vs. global minima

— Running times ranging from O(1) to NP-hard

Today:

— Focus on continuous numerical methods



Optimization 1n 1-D

Look for analogies to bracketing in root-finding

What does it mean to bracket a minimum?

\‘ (Xleft/ f(XIeft)) /

()
(Xright/ f(Xright))

o ;:(Ieft < Xm/? < Xr/ght
(i) Kipic) < 1Xjert)
e ) <




Optimization 1n 1-D

Once we have these properties, there is at least

one local minimum between X;.; and X5,

Establishing bracket initially:

— QGiven X

initial, INCrEement

— Evaluate f(x. ...), f(x. ..., +increment)

— If decreasing, step until find an increase

— Else, step in opposite direction until find an increase
— Grow increment (by a constant factor) at each step

For maximization: substitute —f for f



Optimization 1n 1-D

Strategy: evaluate function at some x,.,,

\‘ (Xleft/ f(XIeft)) /

([
(Xright/ f(Xright))

(XneW/ f(XneW)) o
(Xmid/ f(Xmid))



Optimization 1n 1-D

Strategy: evaluate function at some x,.,,

— Here, new “bracket” points are X,.,,, Xij, X

new’ “*mid’

\‘ (Xleft/ f(XIeft)) /

o
(Xright/ f(Xright))

right

(XneW/ f(Xnew)) o
(Xmid/ f(Xmid))



Optimization 1n 1-D

Strategy: evaluate function at some x,.,,

" /" I
— Here, new “bracket” points are X, Xpewr Xmid

\‘ (Xleft/ f(XIeft)) /

([
(Xright/ f(Xright))

o
(XneWI fi (Xnew))‘\/ (Xmid/ f(Xmid))



Optimization 1n 1-D

Unlike with root-finding, can’t always guarantee
that interval will be reduced by a factor of 2

Let’s find the optimal place for x,..,, relative to
left and right, that will guarantee same factor of
reduction regardless of outcome



Optimization 1n 1-D

2R

if f(x,.,) < flx,)

new interval = «
else

new interval = 1—¢?



Golden Section Search

To assure same interval, want a = 1-a?

S
o} oo

a:—:_
5 @

This is the “golden ratio” = 0.618...

So, interval decreases by 30% per iteration

— Linear convergence



Error Tolerance

Around minimum, derivative = O, so

f(x+AX) = f(X)+1 f"(X)AX* +...
f (x+Ax)— f(x)=1 f"(x)Ax* = machine ¢

:>Ax~\/§

Rule of thumb: pointless to ask for more
accuracy than sqrt(e)

— Can use double precision if you want a single-
precision result (and/or have single-precision data)



Faster 1-D Optimization

Trade off super-linear convergence for
worse robustness

— Combine with Golden Section search for safety

Usual bag of tricks:
— Fit parabola through 3 points, find minimum
— Compute derivatives as well as positions, fit cubic

— Use second derivatives: Newton



Newton’s Method



Newton’s Method




Newton’s Method




Newton’s Method




Newton’s Method

At each step:

_ )
(%)

Xk +1

Requires 15t and 279 derivatives

Quadratic convergence



Multi-Dimensional Optimization

Important in many areas
— Fitting @ model to measured data

— Finding best design in some parameter space

Hard in general

— Weird shapes: multiple extrema, saddles,
curved or elongated valleys, etc.

— Can'’t bracket (but there are “trust region” methods)

In general, easier than rootfinding

— Can always walk “downhill”



Newton’s Method in
Multiple Dimensions

Replace 1°t derivative with gradient,
2nd derivative with Hessian

f(x,y)
[ of
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\ %
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Newton’s Method in

Multiple Dimensions

Replace 1°t derivative with gradient,
2nd derivative with Hessian

So,
Xk+1 = )_(k —H _1(Xk)Vf (Xk)

Tends to be extremely fragile unless function
very smooth and starting close to minimum



Steepest Descent Methods

What if you can’t / don’t want to
use 2" derivative?

“Quasi-Newton” methods estimate Hessian

Alternative: walk along (negative of) gradient...

— Perform 1-D minimization along line passing through
current point in the direction of the gradient

— Once done, re-compute gradient, iterate



Steepest Descent




Problem With Steepest Descent




Conjugate Gradient Methods

Idea: avoid “undoing” minimization that’s

already been done

Walk along direction

dk+1 7 _gk+1 +/8kdk

Polak and Ribiere formula:

_9,.(9cs—90)
gggk

P



Conjugate Gradient Methods

Conjugate gradient implicitly obtains
information about Hessian

For quadratic function in n dimensions, gets
exact solution in n steps (ignoring roundoft error)

Works well in practice...



Value-Only Methods 1n Multi-Dimensions

If can’t evaluate gradients, life is hard

Can use approximate (numerically evaluated)

gradients:
(af B f(x+5-e1)—f(x)\
o, 5
of f(x+o-e,)—f(x)
Vf (X) x5 oe, 5 o)
of f (X+0-e3)—f(X)
oy 5
Naspiy jeigie 3 J



Generic Optimization Strategies

Uniform sampling:

— Cost rises exponentially with # of dimensions

Compass search:
— Try a step along each coordinate in turn

— If can’t find a lower value, halve step size

?

0<€;>o




Generic Optimization Strategies

Simulated annealing:

— Maintain a “temperature” T

— Pick random direction d, and try a step of size
dependent on T

— If value lower than current, accept

— If value higher than current, accept with

probability ~ exp((f(x) — f(x"))/T)

— “Annealing schedule” — how fast does T decrease?

Slow but robust: can avoid non-global minima



Downhill Simplex Method (Nelder-Mead)

Keep track of n+1 points in n dimensions

— Vertices of a simplex (triangle in 2D
tetrahedron in 3D, etc.)

At each iteration: simplex can move,
expand, or contract

— Sometimes known as amoeba method:
simplex “oozes” along the function



Downhill Simplex Method (Nelder-Mead)

Basic operation: reflection

‘ ——————————
S location probed by
/ =0 reflection step

worst point
(highest function value)



Downhill Simplex Method (Nelder-Mead)

If reflection resulted in best (lowest) value so far,

try an expansion

L
——

location probed by
expansion step

Else, if reflection helped at all, keep it



Downhill Simplex Method (Nelder-Mead)

If reflection didn’t help (reflected point still worst)
try a contraction

location probed by
contration step




Downhill Simplex Method (Nelder-Mead)

If all else fails shrink the simplex around
the best point




Downhill Simplex Method (Nelder-Mead)

Method fairly efficient at each iteration
(typically 1-2 function evaluations)

Can take lots of iterations

Somewhat flakey — sometimes needs restart
after simplex collapses on itself, etc.

Benefits: simple to implement, doesn’t need
derivative, doesn’t care about function
smoothness, etc.



Rosenbrock’s Function

Designed specifically for testing
optimization techniques

Curved, narrow valley

f(x,y)=100(y—x)* + (1—x)*




Constrained Optimization

Equality constraints: optimize f(x)
subject to gi(x)=0

Method of Lagrange multipliers: convert to a
higher-dimensional problem

Minimize f(x)+> 40;(x) W.r.t. (X...X,; A ... 4)



Constrained Optimization

Inequality constraints are harder...

If objective function and constraints all linear,
this is “linear programming”
Observation: minimum must lie at corner of

region formed by constraints

Simplex method: move from vertex to vertex,
minimizing objective function



Constrained Optimization

|//

General “nonlinear programming” hard

Algorithms for special cases (e.g. quadratic)



Global Optimization

In general, can’t guarantee that you've found
global (rather than local) minimum

Some heuristics:

— Multi-start: try local optimization from
several starting positions

— Very slow simulated annealing

— Use analytical methods (or graphing) to determine
behavior, guide methods to correct neighborhoods
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