
Root Finding

COS 323

1-D Root Finding

• Given some function, find location where f(x)=0

• Need:
– Starting position x0, hopefully close to solution

– Ideally, points that bracket the root

f(x+) > 0

f(x–) < 0

1-D Root Finding

• Given some function, find location where f(x)=0

• Need:
– Starting position x0, hopefully close to solution

– Ideally, points that bracket the root

– Well-behaved function

What Goes Wrong?

Tangent point:
very difficult

to find

Singularity:
brackets don’t
surround root

Pathological case:
infinite number of
roots – e.g. sin(1/x)

Bisection Method

• Given points x+ and x– that bracket a root, find
xhalf = ½ (x++ x–)

and evaluate f(xhalf)

• If positive, x+ ← xhalf else x–← xhalf

• Stop when x+ and x– close enough

• If function is continuous, this will succeed
in finding some root

Bisection

• Very robust method

• Convergence rate:
– Error bounded by size of [x+… x–] interval

– Interval shrinks in half at each iteration

– Therefore, error cut in half at each iteration:
|εn+1| = ½ |εn|

– This is called “linear convergence”

– One extra bit of accuracy in x at each iteration

Faster Root-Finding

• Fancier methods get super-linear convergence
– Typical approach: model function locally by

something whose root you can find exactly

– Model didn’t match function exactly, so iterate

– In many cases, these are less safe than bisection

Secant Method

• Simple extension to bisection: interpolate or
extrapolate through two most recent points

1

2
3

4

Secant Method

• Faster than bisection:
|εn+1| = const. |εn|1.6

• Faster than linear: number of correct bits
multiplied by 1.6

• Drawback: the above only true if sufficiently
close to a root of a sufficiently smooth function
– Does not guarantee that root remains bracketed

False Position Method

• Similar to secant, but guarantee bracketing

• Stable, but linear in bad cases

1

2
3

4

Other Interpolation Strategies

• Ridders’s method: fit exponential to
f(x+), f(x–), and f(xhalf)

• Van Wijngaarden-Dekker-Brent method:
inverse quadratic fit to 3 most recent points
if within bracket, else bisection

• Both of these safe if function is nasty, but
fast (super-linear) if function is nice

Newton-Raphson

• Best-known algorithm for getting quadratic
convergence when derivative is easy to evaluate

• Another variant on the extrapolation theme

)(
)(

1
n

n
nn xf

xfxx
′

−=+

1
2

3
4

Slope = derivative at 1

Newton-Raphson

• Begin with Taylor series

• Divide by derivative (can’t be zero!)

0...
2

)()()()(2
want

n
nnn

xfxfxfxf =+
′′

+′+=+ δδδ

2
1

2

2

2

~
)(2
)(

0
)(2
)(

0
)(2
)(

)(
)(

nn
n

n
Newton

n

n
Newton

n

n

n

n

xf
xf

xf
xf

xf
xf

xf
xf

εεδδδ

δδδ

δδ

+⇒
′
′′

=−

=
′
′′

++−

=
′
′′

++
′

Newton-Raphson

• Method fragile: can easily get confused

• Good starting point critical
– Newton popular for “polishing off” a root found

approximately using a more robust method

Newton-Raphson Convergence

• Can talk about “basin of convergence”:
range of x0 for which method finds a root

• Can be extremely complex:
here’s an example
in 2-D with 4 roots

Popular Example of Newton: Square Root

• Let f(x) = x2 – a: zero of this is square root of a

• f’(x) = 2x, so Newton iteration is

• “Divide and average” method

()
nx

a
n

n

n
nn x

x
axxx +=

−
−=+ 2

1
2

1 2

Reciprocal via Newton

• Division is slowest of basic operations

• On some computers, hardware divide not
available (!): simulate in software

• Need only subtract and multiply

()nn
x

x
nn

x

x

bb
a

bxxbxx

xf
bxf

a

−=
−
−

−=

−=′
=−=

=

+ 2

)(
0)(

*

2

2

1

1

1

1

1

1

Rootfinding in >1D

• Behavior can be complex: e.g. in 2D

0),(
want

yxg =

0),(
want

yxf =

Rootfinding in >1D

• Can’t bracket and bisect

• Result: few general methods

Newton in Higher Dimensions

• Start with

• Write as vector-valued function

0),(

0),(
want

want

yxg

yxf

=

=









=

),(

),(
)(

yxg

yxf
nxf

Newton in Higher Dimensions

• Expand in terms of Taylor series

• f’ is a Jacobian

0...)()()(
want

nnn =+′+=+ δxfxfδxf

()yxn ∂
∂

∂
∂==′ ffJxf)(

Newton in Higher Dimensions

• Solve for δ

• Requires matrix inversion (we’ll see this later)

• Often fragile, must be careful
– Keep track of whether error decreases

– If not, try a smaller step in direction δ

)()(1
nn xfxJδ −−=

	Root Finding
	1-D Root Finding
	1-D Root Finding
	What Goes Wrong?
	Bisection Method
	Bisection
	Faster Root-Finding
	Secant Method
	Secant Method
	False Position Method
	Other Interpolation Strategies
	Newton-Raphson
	Newton-Raphson
	Newton-Raphson
	Newton-Raphson Convergence
	Popular Example of Newton: Square Root
	Reciprocal via Newton
	Rootfinding in >1D
	Rootfinding in >1D
	Newton in Higher Dimensions
	Newton in Higher Dimensions
	Newton in Higher Dimensions

