
COS 323: Computing for the
Physical and Social Sciences

Szymon Rusinkiewicz

COS 323

• Course webpage
http://www.cs.princeton.edu/~cos323/

• Instructor:
Szymon Rusinkiewicz (smr@cs)

• TAs:
Connelly Barnes (csbarnes@cs), Cynthia Lu
(jingwanl@cs), Dmitry Drutskoy (drutskoy@cs)

http://www.cs.princeton.edu/~cos323/�

What’s This Course About?

• Numerical Algorithms

• Analysis of Data

• Simulation

– Learn through applications

Scientific Computing

Computers through the 70s/80s were used mostly
to solve problems

– Before “personal” computers (!)

– Users were scientists: producers of numerical “codes”
rather than consumers of “applications”

Stanisław Ulam with MANIAC I --- about 104 ops/sec

Numerical Analysis

• Algorithms for solving numerical problems
– Calculus, algebra, data analysis, etc.

– Applications in all scientific and engineering fields

• Analyze/design algorithms based on:
– Running time, memory usage

(both asymptotic and constant factors)

– Applicability, stability, and accuracy
for different classes of problems

Why Is This Hard/Interesting?

• “Numbers” in computers ≠ numbers in math
– Limited precision and range

• Algorithms sometimes don’t give right answer
– Iterative, randomized, approximate

– Unstable

• Running time / accuracy / stability tradeoffs

Numbers in Computers

• “Integers”
– Implemented in hardware: fast

– Mostly sane, except for limited range

• Floating point
– Implemented in most hardware

– Much larger range
(e.g. −231.. 231 for integers, vs. −2127.. 2127 for FP)

– Lower precision (e.g. 7 digits vs. 9)

– “Relative” precision: actual accuracy depends on size

Floating Point Numbers

• Like scientific notation: e.g., c is
2.99792458 × 108 m/s

• This has the form
(multiplier) × (base)(power)

• In the computer,
– Multiplier is called mantissa

– Base is almost always 2

– Power is called exponent

Modern Floating Point Formats

• Almost all computers use IEEE 754 standard

• “Single precision”:
– 24-bit mantissa, base = 2, 8-bit exponent, 1 bit sign

– All fits into 32 bits (!)

• “Double precision”:
– 53-bit mantissa, base = 2, 11-bit exponent, 1 bit sign

– All fits into 64 bits

• Sometimes also have “extended formats”

Other Number Representations

• Fixed point
– Absolute accuracy doesn’t vary with magnitude

– Represent fractions to a fixed precision

– Not supported directly in hardware, but can hack it

• “Infinite precision”
– Integers or rationals allocated dynamically

– Can grow up to available memory

– No direct support in hardware, but libraries available

Consequences of Floating Point

• “Machine epsilon”: smallest positive number you
can add to 1.0 and get something other than 1.0

• For single precision: ε ≈ 10−7

– No such number as 1.000000001

– Rule of thumb: “almost 7 digits of precision”

• For double: ε ≈ 2 × 10−16

– Rule of thumb: “not quite 16 digits of precision”

• These are all relative numbers

So What?

• Simple example: add 1/10 to itself 10 times

Yikes!

• Result: 1/10 + 1/10 + … ≠ 1

• Reason: 0.1 can’t be represented exactly in
binary floating point
– Like 1/3 in decimal

• Rule of thumb: comparing floating point
numbers for equality is always wrong

More Subtle Problem

• Using quadratic formula

to solve x2 – 9999x + 1 = 0
– Only 4 digits: single precision should be OK, right?

• Correct answers: 0.0001… and 9998.999…

• Actual answers in single precision: 0 and 9999
– First answer is 100% off!
– Total cancellation in numerator because b2 >> 4ac

a
acbbx

2
42 −±−

=

Catalog of Errors

• Roundoff error – caused by limitations of
floating-pointb “numbers”

• Truncation error – caused by stopping an
approximate technique early
– e.g., too few terms of Taylor series for sin(θ)

• Inherent error – limitation on data available
– GIGO

• Statistical error – too few random samples

Error Tradeoff

[Heath]

Well-Posedness and Sensitivity

• Problem is well-posed if solution
– exists

– is unique

– depends continuously on problem data

Otherwise, problem is ill-posed

• Solution may still be sensitive to input data
– Ill-conditioned: relative change in solution

much larger than that in input data

[Heath]

Running Time

• Depending on algorithm, we’ll look at:
– Asymptotic analysis for noniterative algorithms

(e.g., inverting an n×n matrix requires time
proportional to n3)

– Convergence order for iterative approximate algorithms
(e.g., an answer to precision δ might require
iterations proportional to 1/δ or 1/δ 2)

Simulation and Modeling

• Purposes: quantitative or qualitative prediction,
development of intuition, theory testing

• Often requires changing the problem (modeling)
– Continuous → discrete

– Infinite → finite

– Omitting effects, variables, dimensions

– Q: how accurate is the resulting approximation?

Example Applications

• Population genetics

• Digital signal processing (including images/audio)

• Simulation of markets

• Classical mechanics

• Weather prediction

This Course

• Basic techniques: root finding, optimization,
linear systems

• Data analysis and modeling: least squares,
dimensionality reduction, visualization, statistics

• Signal processing: sampling, filtering

• Integration and differential equations

• Data analysis, fitting, and modeling

• Simulation

Mechanics

• Programming assignments
– Typically more thought than coding

– Some in MATLAB, some in Java

– Analysis, writeup counts a lot!

• Final project

	COS 323: Computing for the�Physical and Social Sciences
	COS 323
	What’s This Course About?
	Scientific Computing
	
	
	Numerical Analysis
	Why Is This Hard/Interesting?
	Numbers in Computers
	Floating Point Numbers
	Modern Floating Point Formats
	Other Number Representations
	Consequences of Floating Point
	So What?
	Yikes!
	More Subtle Problem
	Catalog of Errors
	Error Tradeoff
	Well-Posedness and Sensitivity
	Running Time
	Simulation and Modeling
	Example Applications
	This Course
	Mechanics

