COS 323: Computing for the Physical and Social Sciences

Szymon Rusinkiewicz

 Course webpage http://www.cs.princeton.edu/~cos323/

Instructor:

Szymon Rusinkiewicz (smr@cs)

• TAs:

Connelly Barnes (csbarnes@cs), Cynthia Lu (jingwanl@cs), Dmitry Drutskoy (drutskoy@cs)

What's This Course About?

- Numerical Algorithms
- Analysis of Data
- Simulation

- Learn through applications

Scientific Computing

Computers through the 70s/80s were used mostly to solve problems

- Before "personal" computers (!)
- Users were scientists: producers of numerical "codes" rather than consumers of "applications"

Stanisław Ulam with MANIAC I --- about 10⁴ ops/sec

Numerical Analysis

- Algorithms for solving numerical problems

 Calculus, algebra, data analysis, etc.
 Applications in all scientific and engineering fields

 Analyze/design algorithms based on:

 Running time, memory usage
 (both asymptotic and constant factors)
 Applicability, stability, and accuracy
 - for different classes of problems

Why Is This Hard/Interesting?

- "Numbers" in computers ≠ numbers in math
 Limited precision and range
- Algorithms sometimes don't give right answer

 Iterative, randomized, approximate
 Unstable
- Running time / accuracy / stability tradeoffs

Numbers in Computers

- "Integers"
 - Implemented in hardware: fast
 - Mostly sane, except for limited range
- Floating point
 - Implemented in most hardware
 - Much larger range
 - (e.g. -2^{31} .. 2^{31} for integers, vs. -2^{127} .. 2^{127} for FP)
 - Lower precision (e.g. 7 digits vs. 9)
 - "Relative" precision: actual accuracy depends on size

Floating Point Numbers

• Like scientific notation: e.g., c is 2.99792458×10^8 m/s

 This has the form (multiplier) × (base)^(power)

In the computer,

- Multiplier is called mantissa

- Base is almost always 2
- Power is called exponent

Modern Floating Point Formats

Almost all computers use IEEE 754 standard

- "Single precision":
 - -24-bit mantissa, base = 2, 8-bit exponent, 1 bit sign
 - All fits into 32 bits (!)
- "Double precision":
 - -53-bit mantissa, base = 2, 11-bit exponent, 1 bit sign
 - All fits into 64 bits

Sometimes also have "extended formats"

Other Number Representations

• Fixed point

- Absolute accuracy doesn't vary with magnitude
- Represent fractions to a fixed precision
- Not supported directly in hardware, but can hack it
- "Infinite precision"
 - Integers or rationals allocated dynamically
 - Can grow up to available memory
 - No direct support in hardware, but libraries available

Consequences of Floating Point

- "Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0
- For single precision: $\varepsilon \approx 10^{-7}$
 - No such number as 1.00000001
 - Rule of thumb: "almost 7 digits of precision"
- For double: $\varepsilon \approx 2 \times 10^{-16}$
 - Rule of thumb: "not quite 16 digits of precision"
- These are all *relative* numbers

• Simple example: add $\frac{1}{10}$ to itself 10 times

Yikes!

- Result: $1/_{10} + 1/_{10} + \dots \neq 1$
- Reason: 0.1 can't be represented exactly in binary floating point

 Like ¹/₃ in decimal

 Rule of thumb: comparing floating point numbers for equality is always wrong

More Subtle Problem

Using quadratic formula

to solv

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

e x² - 9999x + 1 = 0

- Only 4 digits: single precision should be OK, right?

- Correct answers: 0.0001... and 9998.999...
- Actual answers in single precision: 0 and 9999
 First answer is 100% off!
 - Total cancellation in numerator because $b^2 >> 4ac$

Catalog of Errors

- Roundoff error caused by limitations of floating-pointb "numbers"
- Truncation error caused by stopping an approximate technique early
 - e.g., too few terms of Taylor series for $sin(\theta)$
- Inherent error limitation on data available
 GIGO
- Statistical error too few random samples

Error Tradeoff

[Heath]

Well-Posedness and Sensitivity

- Problem is well-posed if solution
 - exists
 - is unique
 - depends continuously on problem data
 Otherwise, problem is ill-posed
- Solution may still be sensitive to input data

 Ill-conditioned: relative change in solution
 much larger than that in input data

Running Time

- Depending on algorithm, we'll look at:
 - Asymptotic analysis for noniterative algorithms (e.g., inverting an $n \times n$ matrix requires time proportional to n^3)
 - Convergence order for iterative approximate algorithms (e.g., an answer to precision δ might require iterations proportional to $1/\delta$ or $1/\delta^2$)

Simulation and Modeling

 Purposes: quantitative or qualitative prediction, development of intuition, theory testing

- Often requires changing the problem (modeling)
 Continuous → discrete
 - Infinite \rightarrow finite
 - Omitting effects, variables, dimensions
 - Q: how accurate is the resulting approximation?

Example Applications

- Population genetics
- Digital signal processing (including images/audio)
- Simulation of markets
- Classical mechanics
- Weather prediction

This Course

- Basic techniques: root finding, optimization, linear systems
- Data analysis and modeling: least squares, dimensionality reduction, visualization, statistics
- Signal processing: sampling, filtering
- Integration and differential equations
- Data analysis, fitting, and modeling
- Simulation

Mechanics

Programming assignments

 Typically more thought than coding
 Some in MATLAB, some in Java
 Analysis, writeup counts a lot!

Final project