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Abstract 

Disk-based deduplication storage has emerged as the new-generation storage system for enterprise data protection to 
replace tape libraries. Deduplication removes redundant data segments to compress data into a highly compact form 
and makes it economical to store backups on disk instead of tape.  A crucial requirement for enterprise data 
protection is high throughput, typically over 100 MB/sec, which enables backups to complete quickly.  A significant 
challenge is to identify and eliminate duplicate data segments at this rate on a low-cost system that cannot afford 
enough RAM to store an index of the stored segments and may be forced to access an on-disk index for every input 
segment.  

This paper describes three techniques employed in the production Data Domain deduplication file system to relieve 
the disk bottleneck. These techniques include: (1) the Summary Vector, a compact in-memory data structure for 
identifying new segments; (2) Stream-Informed Segment Layout, a data layout method to improve on-disk locality 
for sequentially accessed segments; and (3) Locality Preserved Caching, which maintains the locality of the 
fingerprints of duplicate segments to achieve high cache hit ratios.  Together, they can remove 99% of the disk 
accesses for deduplication of real world workloads.  These techniques enable a modern two-socket dual-core system 
to run at 90% CPU utilization with only one shelf of 15 disks and achieve 100 MB/sec for single-stream throughput 
and 210 MB/sec for multi-stream throughput. 

1 Introduction 
The massive storage requirements for data protection 
have presented a serious problem for data centers. 
Typically, data centers perform a weekly full backup of 
all the data on their primary storage systems to secondary 
storage devices where they keep these backups for weeks 
to months. In addition, they may perform daily 
incremental backups that copy only the data which has 
changed since the last backup. The frequency, type and 
retention of backups vary for different kinds of data, but 
it is common for the secondary storage to hold 10 to 20 
times more data than the primary storage. For disaster 
recovery, additional offsite copies may double the 
secondary storage capacity needed.  If the data is 
transferred offsite over a wide area network, the network 
bandwidth requirement can be enormous.   

Given the data protection use case, there are two main 
requirements for a secondary storage system storing 
backup data. The first is low cost so that storing backups 
and moving copies offsite does not end up costing 
significantly more than storing the primary data. The 
second is high performance so that backups can complete 
in a timely fashion. In many cases, backups must 
complete overnight so the load of performing backups 
does not interfere with normal daytime usage.  

The traditional solution has been to use tape libraries as 
secondary storage devices and to transfer physical tapes 
for disaster recovery. Tape cartridges cost a small 
fraction of disk storage systems and they have good 
sequential transfer rates in the neighborhood of 100 
MB/sec. But, managing cartridges is a manual process 
that is expensive and error prone. It is quite common for 
restores to fail because a tape cartridge cannot be located 
or has been damaged during handling. Further, random 
access performance, needed for data restores, is 
extremely poor. Disk-based storage systems and network 
replication would be much preferred if they were 
affordable. 

During the past few years, disk-based, “deduplication” 
storage systems have been introduced for data protection 
[QD02, MCM01, KDLT04, Dat05, JDT05].  Such 
systems compress data by removing duplicate data across 
files and often across all the data in a storage system.  
Some implementations achieve a 20:1 compression ratio 
(total data size divided by physical space used) for 3 
months of backup data using the daily-incremental and 
weekly-full backup policy. By substantially reducing the 
footprint of versioned data, deduplication can make the 
costs of storage on disk and tape comparable and make 
replicating data over a WAN to a remote site for disaster 
recovery practical.   



  

The specific deduplication approach varies among 
system vendors.  Certainly the different approaches vary 
in how effectively they reduce data. But, the goal of this 
paper is not to investigate how to get the greatest data 
reduction, but rather how to do deduplication at high 
speed in order to meet the performance requirement for 
secondary storage used for data protection. 

The most widely used deduplication method for 
secondary storage, which we call Identical Segment 
Deduplication, breaks a data file or stream into 
contiguous segments and eliminates duplicate copies of 
identical segments. Several emerging commercial 
systems have used this approach. 

The focus of this paper is to show how to implement a 
high-throughput Identical Segment Deduplication 
storage system at low system cost. The key performance 
challenge is finding duplicate segments. Given a segment 
size of 8 KB and a performance target of 100 MB/sec, a 
deduplication system must process approximately 12,000 
segments per second.  

An in-memory index of all segment fingerprints could 
easily achieve this performance, but the size of the index 
would limit system size and increase system cost. 
Consider a segment size of 8 KB and a segment 
fingerprint size of 20 bytes. Supporting 8 TB worth of 
unique segments, would require 20 GB just to store the 
fingerprints.  

An alternative approach is to maintain an on-disk index 
of segment fingerprints and use a cache to accelerate 
segment index accesses. Unfortunately, a traditional 
cache would not be effective for this workload. Since 
fingerprint values are random, there is no spatial locality 
in the segment index accesses. Moreover, because the 
backup workload streams large data sets through the 
system, there is very little temporal locality. Most 
segments are referenced just once every week during the 
full backup of one particular system. Reference-based 
caching algorithms such as LRU do not work well for 
such workloads. The Venti system, for example, 
implemented such a cache [QD02].  Its combination of 
index and block caches only improves its write 
throughput by about 16% (from 5.6MB/sec to 
6.5MB/sec) even with 8 parallel disk index lookups.  The 
primary reason is due to its low cache hit ratios.   

With low cache hit ratios, most index lookups require 
disk operations. If each index lookup requires a disk 
access which may take 10 msec and 8 disks are used for 
index lookups in parallel, the write throughput will be 
about 6.4MB/sec, roughly corresponding to Venti’s 
throughput of less than 6.5MB/sec with 8 drives. While 
Venti’s performance may be adequate for the archival 
usage of a small workgroup, it’s a far cry from the 
throughput goal of deduplicating at 100 MB/sec to 

compete with high-end tape libraries. Achieving 100 
MB/sec, would require 125 disks doing index lookups in 
parallel! This would increase the system cost of 
deduplication storage to an unattainable level.  

Our key idea is to use a combination of three methods to 
reduce the need for on-disk index lookups during the 
deduplication process. We present in detail each of the 
three techniques used in the production Data Domain 
deduplication file system.   The first is to use a Bloom 
filter, which we call a Summary Vector, as the summary 
data structure to test if a data segment is new to the 
system. It avoids wasted lookups for segments that do 
not exist in the index. The second is to store data 
segments and their fingerprints in the same order that 
they occur in a data file or stream. Such Stream-Informed 
Segment Layout (SISL) creates spatial locality for 
segment and fingerprint accesses. The third, called 
Locality Preserved Caching, takes advantage of the 
segment layout to fetch and cache groups of segment 
fingerprints that are likely to be accessed together. A 
single disk access can result in many cache hits and thus 
avoid many on-disk index lookups.  

Our evaluation shows that these techniques are effective 
in removing the disk bottleneck in an Identical Segment 
Deduplication storage system.  For a system running on a 
server with two dual-core CPUs with one shelf of 15 
drives, these techniques can eliminate about 99% of 
index lookups for variable-length segments with an 
average size of about 8 KB. We show that the system 
indeed delivers high throughput: achieving over 100 
MB/sec for single-stream write and read performance, 
and over 210 MB/sec for multi-stream write 
performance.  This is an order-of-magnitude throughput 
improvement over the parallel indexing techniques 
presented in the Venti system. 

The rest of the paper is organized as follows.  Section 2 
presents challenges and observations in designing a 
deduplication storage system for data protection. Section 
3 describes the software architecture of the production 
Data Domain deduplication file system.  Section 4 
presents our methods for avoiding the disk bottleneck.  
Section 5 shows our experimental results.  Section 6 
gives an overview of the related work, and Section 7 
draws conclusions. 

2 Challenges and Observations 

2.1 Variable vs. Fixed Length Segments 
An Identical Segment Deduplication system could 
choose to use either fixed length segments or variable 
length segments created in a content dependent manner. 
Fixed length segments are the same as the fixed-size 
blocks of many non-deduplication file systems. For the 
purposes of this discussion, extents that are multiples of 



  

some underlying fixed size unit such as a disk sector are 
the same as fixed-size blocks. 

Variable-length segments can be any number of bytes in 
length within some range. They are the result of 
partitioning a file or data stream in a content dependent 
manner [Man93, BDH94]. 

The main advantage of a fixed segment size is simplicity. 
A conventional file system can create fixed-size blocks 
in the usual way and a deduplication process can then be 
applied to deduplicate those fixed-size blocks or 
segments. The approach is effective at deduplicating 
whole files that are identical because every block of 
identical files will of course be identical. 

In backup applications, single files are backup images 
that are made up of large numbers of component files. 
These files are rarely entirely identical even when they 
are successive backups of the same file system. A single 
addition, deletion, or change of any component file can 
easily shift the remaining image content. Even if no other 
file has changed, the shift would cause each fixed sized 
segment to be different than it was last time, containing 
some bytes from one neighbor and giving up some bytes 
to its other neighbor. The approach of partitioning the 
data into variable length segments based on content 
allows a segment to grow or shrink as needed so the 
remaining segments can be identical to previously stored 
segments. 

Even for storing individual files, variable length 
segments have an advantage. Many files are very similar 
to, but not identical to other versions of the same file. 
Variable length segments can accommodate these 
differences and maximize the number of identical 
segments. 

Because variable length segments are essential for 
deduplication of the shifted content of backup images, 
we have chosen them over fixed-length segments. 

2.2 Segment Size 
Whether fixed or variable sized, the choice of average 
segment size is difficult because of its impact on 
compression and performance.  The smaller the 
segments, the more duplicate segments there will be.  Put 
another way, if there is a small modification to a file, the 
smaller the segment, the smaller the new data that must 
be stored and the more of the file’s bytes will be in 
duplicate segments. Within limits, smaller segments will 
result in a better compression ratio. 

On the other hand, with smaller segments, there are more 
segments to process which reduces performance. At a 
minimum, more segments mean more times through the 
deduplication loop, but it is also likely to mean more on-
disk index lookups.  

With smaller segments, there are more segments to 
manage. Since each segment requires the same metadata 
size, smaller segments will require more storage 
footprint for their metadata, and the segment fingerprints 
for fewer total user bytes can be cached in a given 
amount of memory. The segment index is larger. There 
are more updates to the index. To the extent that any data 
structures scale with the number of segments, they will 
limit the overall capacity of the system. Since 
commodity servers typically have a hard limit on the 
amount of physical memory in a system, the decision on 
the segment size can greatly affect the cost of the system. 

A well-designed duplication storage system should have 
the smallest segment size possible given the throughput 
and capacity requirements for the product. After several 
iterative design processes, we have chosen to use 8 KB 
as the average segment size for the variable sized data 
segments in our deduplication storage system. 

2.3 Performance-Capacity Balance 
A secondary storage system used for data protection 
must support a reasonable balance between capacity and 
performance. Since backups must complete within a 
fixed backup window time, a system with a given 
performance can only backup so much data within the 
backup window. Further, given a fixed retention period 
for the data being backed up, the storage system needs 
only so much capacity to retain the backups that can 
complete within the backup window. Conversely, given a 
particular storage capacity, backup policy, and 
deduplication efficiency, it is possible to compute the 
throughput that the system must sustain to justify the 
capacity. This balance between performance and 
capacity motivates the need to achieve good system 
performance with only a small number of disk drives. 

Assuming a backup policy of weekly fulls and daily 
incrementals with a retention period of 15 weeks and a 
system that achieves a 20x compression ratio storing 
backups for such a policy, as a rough rule of thumb, it 
requires approximately as much capacity as the primary 
data to store all the backup images. That is, for 1 TB of 
primary data, the deduplication secondary storage would 
consume approximately 1 TB of physical capacity to 
store the 15 weeks of backups. 

Weekly full backups are commonly done over the 
weekend with a backup window of 16 hours. The 
balance of the weekend is reserved for restarting failed 
backups or making additional copies. Using the rule of 
thumb above, 1 TB of capacity can protect 
approximately 1 TB of primary data. All of that must be 
backed up within the 16-hour backup window which 
implies a throughput of about 18 MB/sec per terabyte of 
capacity. 



  

Following this logic, a system with a shelf of 15 SATA 
drives each with a capacity of 500 GB and a total usable 
capacity after RAID, spares, and other overhead of 6 TB 
could protect 6 TB of primary storage and must therefore 
be able to sustain over 100 MB/sec of deduplication 
throughput. 

2.4 Fingerprint vs. Byte Comparisons 
An Identical Segment Deduplication storage system 
needs a method to determine that two segments are 
identical. This could be done with a byte by byte 
comparison of the newly written segment with the 
previously stored segment. However, such a comparison 
is only possible by first reading the previously stored 
segment from disk. This would be much more onerous 
than looking up a segment in an index and would make it 
extremely difficult if not impossible to maintain the 
needed throughput.  

To avoid this overhead, we rely on comparisons of 
segment fingerprints to determine the identity of a 
segment. The fingerprint is a collision-resistant hash 
value computed over the content of each segment. SHA-
1 is such a collision-resistant function [NIST95]. At a 
160-bit output value, the probability of fingerprint 
collision by a pair of different segments is extremely 
small, many orders of magnitude smaller than hardware 
error rates [QD02]. When data corruption occurs, it will 
almost certainly be the result of undetected errors in 
RAM, IO busses, network transfers, disk storage devices, 
other hardware components or software errors and not 
from a collision. 

3 Deduplication Storage System 
Architecture 

To provide the context for presenting our methods for 
avoiding the disk bottleneck, this section describes the 
architecture of the production Data Domain File System, 
DDFS, for which Identical Segment Deduplication is an 
integral feature. Note that the methods presented in the 
next section are general and can apply to other Identical 
Segment Deduplication storage systems. 

At the highest level, DDFS breaks a file into variable-
length segments in a content dependent manner [Man93, 
BDH94] and computes a fingerprint for each segment. 
DDFS uses the fingerprints both to identify duplicate 
segments and as part of a segment descriptor used to 
reference a segment. It represents files as sequences of 
segment fingerprints. During writes, DDFS identifies 
duplicate segments and does its best to store only one 
copy of any particular segment. Before storing a new 
segment, DDFS uses a variation of the Ziv-Lempel 
algorithm to compress the segment [ZL77].  

Figure 1 is a block diagram of DDFS, which is made up 
of a stack of software components. At the top of the 
stack, DDFS supports multiple access protocols which 
are layered on a common File Services interface. 
Supported protocols include NFS, CIFS, and a virtual 
tape library interface (VTL). 

When a data stream enters the system, it goes through 
one of the standard interfaces to the generic File Services 
layer, which manages the name space and file metadata.  
The File Services layer forwards write requests to 
Content Store which manages the data content within a 
file. Content Store breaks a data stream into segments, 
uses Segment Store to perform deduplication, and keeps 
track of the references for a file.  Segment Store does the 
actual work of deduplication. It packs deduplicated 
(unique) segments into relatively large units, compresses 
such units using a variation of Ziv-Lempel algorithm to 
further compress the data, and then writes the 
compressed results into containers supported by 
Container Manager.  

To read a data stream from the system, a client drives the 
read operation through one of the standard interfaces and 
the File Services Layer.  Content Store uses the 
references to deduplicated segments to deliver the 
desired data stream to the client.  Segment Store 
prefetches, decompresses, reads and caches data 
segments from Container Manager. 

The following describes the Content Store, Segment 
Store and the Container Manager in detail and discusses 
our design decisions.   

3.1 Content Store 
Content Store implements byte-range writes and reads 
for deduplicated data objects, where an object is a linear 

 

  
Figure 1: Data Domain File System architecture. 

 



  

sequence of client data bytes and has intrinsic and client-
settable attributes or metadata. An object may be a 
conventional file, a backup image of an entire volume or 
a tape cartridge.  

To write a range of bytes into an object, Content Store 
performs several operations. 

• Anchoring partitions the byte range into variable-
length segments in a content dependent manner 
[Man93, BDH94].   

• Segment fingerprinting computes the SHA-1 hash 
and generates the segment descriptor based on it. 
Each segment descriptor contains per segment 
information of at least fingerprint and size 

• Segment mapping builds the tree of segments that 
records the mapping between object byte ranges and 
segment descriptors. The goal is to represent a data 
object using references to deduplicated segments.   

To read a range of bytes in an object, Content Store 
traverses the tree of segments created by the segment 
mapping operation above to obtain the segment 
descriptors for the relevant segments. It fetches the 
segments from Segment Store and returns the requested 
byte range to the client. 

3.2 Segment Store 
Segment Store is essentially a database of segments 
keyed by their segment descriptors. To support writes, it 
accepts segments with their segment descriptors and 
stores them. To support reads, it fetches segments 
designated by their segment descriptors.  

To write a data segment, Segment Store performs several 
operations. 

• Segment filtering determines if a segment is a 
duplicate.  This is the key operation to deduplicate 
segments and may trigger disk I/Os, thus its 
overhead can significantly impact throughput 
performance. 

• Container packing adds segments to be stored to a 
container which is the unit of storage in the system. 
The packing operation also compresses segment data 
using a variation of the Ziv-Lempel algorithm. A 
container, when fully packed, is appended to the 
Container Manager. 

• Segment Indexing updates the segment index that 
maps segment descriptors to the container holding 
the segment, after the container has been appended 
to the Container Manager. 

To read a data segment, Segment Store performs the 
following operations. 

• Segment lookup finds the container storing the 
requested segment.  This operation may trigger disk 
I/Os to look in the on-disk index, thus it is 
throughput sensitive.   

• Container retrieval reads the relevant portion of the 
indicated container by invoking the Container 
Manager.  

• Container unpacking decompresses the retrieved 
portion of the container and returns the requested 
data segment. 

3.3 Container Manager 
The Container Manager provides a storage container log 
abstraction, not a block abstraction, to Segment Store. 
Containers, shown in Figure 2, are self-describing in that 
a metadata section includes the segment descriptors for 
the stored segments. They are immutable in that new 
containers can be appended and old containers deleted, 
but containers cannot be modified once written. When 
Segment Store appends a container, the Container 
Manager returns a container ID which is unique over the 
life of the system. 

The Container Manager is responsible for allocating, 
deallocating, reading, writing and reliably storing 
containers. It supports reads of the metadata section or a 
portion of the data section, but it only supports appends 
of whole containers. If a container is not full but needs to 
be written to disk, it is padded out to its full size. 

Container Manager is built on top of standard block 
storage. Advanced techniques such as Software RAID-6, 
continuous data scrubbing, container verification, and 
end to end data checks are applied to ensure a high level 
of data integrity and reliability. 

The container abstraction offers several benefits.  
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Figure 2: Containers are self-describing, immutable, 
units of storage several megabytes in size. All segments 
are stored in containers. 

 



  

• The fixed container size makes container allocation 
and deallocation easy. 

• The large granularity of a container write achieves 
high disk throughput utilization.  

• A properly sized container size allows efficient full-
stripe RAID writes, which enables an efficient 
software RAID implementation at the storage layer. 

4 Acceleration Methods  
This section presents three methods to accelerate the 
deduplication process in our deduplication storage 
system: summary vector, stream-informed data layout, 
and locality preserved caching.  The combination of 
these methods allows our system to avoid about 99% of 
the disk I/Os required by a system relying on index 
lookups alone. The following describes each of the three 
techniques in detail. 

4.1 Summary Vector 
The purpose of the Summary Vector is to reduce the 
number of times that the system goes to disk to look for a 
duplicate segment only to find that none exists. One can 
think of the Summary Vector as an in-memory, 
conservative summary of the segment index. If the 
Summary Vector indicates a segment is not in the index, 
then there is no point in looking further for the segment; 
the segment is new and should be stored. On the other 
hand, being only an approximation of the index, if the 
Summary Vector indicates the segment is in the index, 
there is a high probability that the segment is actually in 
the segment index, but there is no guarantee. 

The Summary Vector implements the following 
operations: 

• Init() 

• Insert(fingerprint) 

• Lookup(fingerprint) 

We use a Bloom filter to implement the Summary Vector 
in our current design [Blo70]. A Bloom filter uses a 
vector of m bits to summarize the existence information 
about n fingerprints in the segment index. In Init(), 
all bits are set to 0. Insert(a) uses k independent 
hashing functions, h 1 , …, hk, each mapping a fingerprint 
a to [0, m -1] and sets the bits at position h1(a), …, hk (a) 
to 1. For any fingerprint x, Lookup(x) will check all 
bits at position h 1(x) , …, h k(x) to see if they are all set 
to 1. If any of the bits is 0, then we know x is definitely 
not in the segment index. Otherwise, with high 
probability, x will be in the segment index, assuming 
reasonable choices of m, n, and k. Figure 3 illustrates the 
operations of Summary Vector. 

As indicated in [FCAB98], the probability of false 
positive for an element not in the set, or the false positive 
rate, can be calculated in a straightforward fashion, 
given our assumption that hash functions are perfectly 
random. After all n elements hashed and inserted into the 
Bloom filter, the probability that a specific bit is still 0 is 
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Using this formula, one can derive a particular parameter 
to achieve a given false positive rate.  For example, to 
achieve 2% false positive rate, the smallest size of the 
Summary Vector is 8 × n bits (m/n = 8) and the number 
of hash functions can be 4 (k = 4).   

To have a fairly small probability of false positive such 
as a fraction of a percent, we choose m such that m/n is 
about 8 for a target goal of n and k around 4 or 5. For 
example, supporting one billion base segments requires 
about 1 GB of memory for the Summary Vector. 

At system shutdown the system writes the Summary 
Vector to disk. At startup, it reads in the saved copy. To 
handle power failures and other kinds of unclean 
shutdowns, the system periodically checkpoints the 

 
Figure 3: Summary Vector operations. The Summary 
Vector can identify most new segments without looking 
up the segment index. Initially all bits in the array are 0. 
On insertion, shown in (a), bits specified by several 
hashes, h1, h2, and h3 of the fingerprint of the segment 
are set to 1. On lookup, shown in (b), the bits specified by 
the same hashes are checked. If any are 0, as shown in 
this case, the segment cannot be in the system. 



  

Summary Vector to disk. To recover, the system loads 
the most recent checkpoint of the Summary Vector and 
then processes the containers appended to the container 
log since the checkpoint, adding the contained segments 
to the Summary Vector. 

Although several variations of Bloom filters have been 
proposed during the past few years [BM05], we have 
chosen the basic Bloom Filter for simplicity and efficient 
implementation. 

4.2 Stream-Informed Segment Layout 
We use Stream-Informed Segment Layout (SISL) to 
create spatial locality for both segment data and segment 
descriptors and to enable Locality Preserved Caching as 
described in the next section. A stream here is just the 
sequence of bytes that make up a backup image stored in 
a Content Store object. 

Our main observation is that in backup applications, 
segments tend to reappear in the same of very similar 
sequences with other segments. Consider a 1 MB file 
with a hundred or more segments. Every time that file is 
backed up, the same sequence of a hundred segments 
will appear. If the file is modified slightly, there will be 
some new segments, but the rest will appear in the same 
order. When new data contains a duplicate segment x, 
there is a high probability that other segments in its 
locale are duplicates of the neighbors of x. We call this 
property segment duplicate locality.  SISL is designed to 
preserve this locality. 

Content Store and Segment Store support a stream 
abstraction that segregates the segments created for 
different objects, preserves the logical ordering of 
segments within the Content Store object, and dedicates 
containers to hold segments for a single stream in their 
logical order. The metadata sections of these containers 
store segment descriptors in their logical order. Multiple 
streams can be written to Segment Store in parallel, but 
the stream abstraction prevents the segments for the 
different streams from being jumbled together in a 
container. 

The design decision to make the deduplication storage 
system stream aware is a significant distinction from 
other systems such as Venti. 

When an object is opened for writing, Content Store 
opens a corresponding stream with Segment Store which 
in turn assigns a container to the stream. Content Store 
writes ordered batches of segments for the object to the 
stream. Segment Store packs the new segments into the 
data section of the dedicated container, performs a 
variation of Ziv-Lempel compression on the data section, 
and writes segment descriptors into the metadata section 
of the container. When the container fills up, it appends 
it with Container Manager and starts a new container for 

the stream. Because multiple streams can write to 
Segment Store in parallel, there may be multiple open 
containers, one for each active stream.  

The end result is Stream-Informed Segment Layout or 
SISL, because for a data stream, new data segments are 
stored together in the data sections, and their segment 
descriptors are stored together in the metadata section.  

SISL offers many benefits.  

• When multiple segments of the same data stream are 
written to a container together, many fewer disk I/Os 
are needed to reconstruct the stream which helps the 
system achieve high read throughput. 

• Descriptors and compressed data of adjacent new 
segments in the same stream are packed linearly in 
the metadata and data sections respectively in the 
same container. This packing captures duplicate 
locality for future streams resembling this stream, 
and enables Locality Preserved Caching to work 
effectively. 

• The metadata section is stored separately from the 
data section, and is generally much smaller than the 
data section. For example, a container size of 4 MB, 
an average segment size of 8 KB, and a Ziv-Lempel 
compression ratio of 2, yield about 1K segments in a 
container, and require a metadata section size of just 
about 64 KB, at a segment descriptor size of 64 
bytes. The small granularity on container metadata 
section reads allows Locality Preserved Caching in a 
highly efficient manner: 1K segments can be cached 
using a single small disk I/O. This contrasts to the 
old way of one on-disk index lookup per segment. 

These advantages make SISL an effective mechanism for 
deduplicating multiple-stream fine-grained data 
segments. Packing containers in a stream aware fashion 
distinguishes our system from Venti and many other 
systems. 

4.3 Locality Preserved Caching 
We use Locality Preserved Caching (LPC) to accelerate 
the process of identifying duplicate segments.  

A traditional cache does not work well for caching 
fingerprints, hashes, or descriptors for duplicate 
detection because fingerprints are essentially random.  
Since it is difficult to predict the index location for next 
segment without going through the actual index access 
again, the miss ratio of a traditional cache will be 
extremely high. 

We apply LPC to take advantage of segment duplicate 
locality so that if a segment is a duplicate, the base 
segment is highly likely cached already. LPC is achieved 



  

by combining the container abstraction with a segment 
cache as discussed next. 

For segments that cannot be resolved by the Summary 
Vector and LPC, we resort to looking up the segment in 
the segment index. We have two goals on this retrieval:  

• Making this retrieval a relatively rare occurrence. 

• Whenever the retrieval is made, it benefits segment 
filtering of future segments in the locale. 

LPC implements a segment cache to cache likely base 
segment descriptors for future duplicate segments.  The 
segment cache maps a segment fingerprint to its 
corresponding container ID.  Our main idea is to 
maintain the segment cache by groups of fingerprints.  
On a miss, LPC will fetch the entire metadata section in 
a container, insert all fingerprints in the metadata section 
into the cache, and remove all fingerprints of an old 
metadata section from the cache together.  This method 
will preserve the locality of fingerprints of a container in 
the cache. 

The operations for the segment cache are:  

• Init(): Initialize the segment cache. 
• Insert(container): Iterate through all 

segment descriptors in container metadata section, 
and insert each descriptor and container ID into the 
segment cache. 

• Remove(container): Iterate through all 
segment descriptors in container metadata section, 
and remove each descriptor and container ID from 
the segment cache. 

• Lookup(fingerprint): Find the corresponding 
container ID for the fingerprint specified. 

Descriptors of all segments in a container are added or 
removed from the segment cache at once. Segment 
caching is typically triggered by a duplicate segment that 
misses in the segment cache, and requires a lookup in the 
segment index. As a side effect of finding the 
corresponding container ID in the segment index, we 
prefetch all segment descriptors in this container to the 
segment cache. We call this Locality Preserved Caching. 
The intuition is that base segments in this container are 
likely to be checked against for future duplicate 
segments, based on segment duplicate locality. Our 
results on real world data have validated this intuition 
overwhelmingly. 

We have implemented the segment cache using a hash 
table. When the segment cache is full, containers that are 
ineffective in accelerating segment filtering are leading 
candidates for replacement from the segment cache. A 
reasonable cache replacement policy is Least-Recently-
Used (LRU) on cached containers. 

4.4 Accelerated Segment Filtering 
We have combined all three techniques above in the 
segment filtering phase of our implementation.  

For an incoming segment for write, the algorithm does 
the following: 

• Checks to see if it is in the segment cache.  If it is in 
the cache, the incoming segment is a duplicate.  

• If it is not in the segment cache, check the Summary 
Vector.  If it is not in the Summary Vector, the 
segment is new.  Write the new segment into the 
current container. 

• If it is in the Summary Vector, lookup the segment 
index for its container Id.  If it is in the index, the 
incoming segment is a duplicate; insert the metadata 
section of the container into the segment cache.  If 
the segment cache is full, remove the metadata 
section of the least recently used container first. 

• If it is not in the segment index, the segment is new. 
Write the new segment into the current container. 

We aim to keep the segment index lookup to a minimum 
in segment filtering. 

5 Experimental Results 
We would like to answer the following questions: 

• How well does the deduplication storage system 
work with real world datasets? 

• How effective are the three techniques in terms of 
reducing disk I/O operations? 

• What throughput can a deduplication storage system 
using these techniques achieve? 

For the first question, we will report our results with real 
world data from two customer data centers.  For the next 
two questions, we conducted experiments with several 
internal datasets. Our experiments use a Data Domain 
DD580 deduplication storage system as an NFS v3 
server [PJSS*94]. This deduplication system features 
two-socket duel-core CPU’s running at 3 Ghz, a total of 
8 GB system memory, 2 gigabit NIC cards, and a 15-
drive disk subsystem running software RAID6 with one 
spare drive. We use 1 and 4 backup client computers 
running NFS v3 client for sending data. 

5.1 Results with Real World Data 
The system described in this paper has been used at over 
1,000 data centers.  The following paragraphs report the 
deduplication results from two data centers, generated 
from the auto-support mechanism of the system. 



  

Data center A backs up structured database data over the 
course of 31 days during the initial deployment of a 
deduplication system. The backup policy is to do daily 
full backups, where each full backup produces over 600 
GB at steady state. There are two exceptions: 

• During the initial seeding phase (until 6th day in this 
example), different data or different types of data are 
rolled into the backup set, as backup administrators 
figure out how they want to use the deduplication 
system. A low rate of duplicate segment 
identification and elimination is typically associated 
with the seeding phase. 

• There are certain days (18th day in this example) 
when no backup is generated.  

Figure 4 shows the logical capacity (the amount of data 
from user or backup application perspective) and the 
physical capacity (the amount of data stored in disk 
media) of the system over time at data center A. 

At the end of 31st day, the data center has backed up 
about 16.9 TB, and the corresponding physical capacity 
is less than 440 GB, reaching a total compression ratio of 
38.54 to 1. 

Figure 5 shows daily global compression ratio (the daily 
rate of data reduction due to duplicate segment 
elimination), daily local compression ratio (the daily rate 
of data reduction due to Ziv-Lempel style compression 

on new segments), cumulative global compression ratio 
(the cumulative ratio of data reduction due to duplicate 
segment elimination), and cumulative total compression 
ratio (the cumulative ratio of data reduction due to 
duplicate segment elimination and Ziv-Lempel style 
compression on new segments) over time. 

At the end of 31st day, cumulative global compression 
ratio reaches 22.53 to 1, and cumulative total 
compression ratio reaches 38.54 to 1.   

The daily global compression ratios change quite a bit 
over time, whereas the daily local compression ratios are 
quite stable. Table 1 summarizes the minimum, 
maximum, average, and standard deviation of both daily 
global and daily local compression ratios, excluding 
seeding (the first 6) days and no backup (18th) day. 

Data center B backs up a mixture of structured database 
and unstructured file system data over the course of 48 
days during the initial deployment of a deduplication 
system using both full and incremental backups. Similar 
to that in data center A, seeding lasts until the 6th day, 
and there are a few days without backups (8th, 12-14th, 
35th days). Outside these days, the maximum daily 
logical backup size is about 2.1 TB, and the smallest size 
is about 50 GB.  

Figure 6 shows the logical capacity and the physical 
capacity of the system over time at data center B. 

At the end of 48th day, the logical capacity reaches about 
41.4 TB, and the corresponding physical capacity is 
about 3.0 TB.  The total compression ratio is 13.71 to 1. 

Figure 7 shows daily global compression ratio, daily 
local compression ratio, cumulative global compression 
ratio, and cumulative total compression ratio over time. 

At the end of 48th day, cumulative global compression 
reaches 6.85, while cumulative total compression reaches 
13.71. 

 
Figure 4: Logical/Physical Capacities at Data Center A 

 

 Min Max Average Standard 
deviation 

Daily global 
compression 10.05 74.31 40.63 13.73 

Daily local 
compression 1.58 1.97 1.78 0.09 

 
Table 1: Statistics on Daily Global and Daily Local 
Compression Ratios at Data Center A 

 

 
Figure 5: Compression Ratios at Data Center A 

 



  

Table 2 summarizes the minimum, maximum, average, 
and standard deviation of both daily global and daily 
local compression ratios, excluding seeding and days 
without backup.  

The two sets of results show that the deduplication 
storage system works well with the real world datasets.  
As expected, both cumulative global and cumulative 
total compression ratios increase as the system holds 
more backup data.  

During seeding, duplicate segment elimination tends to 
be ineffective, because most segments are new. After 
seeding, despite the large variation in the actual number, 
duplicate segment elimination becomes extremely 

effective. Independent of seeding, Ziv-Lempel style 
compression is relatively stable, giving a reduction of 
about 2 over time. The real world observations on the 
applicability of duplicate segment elimination during 
seeding and after seeding are particularly relevant in 
evaluating our techniques to reduce disk accesses below. 

5.2 I/O Savings with Summary Vector and 
Locality Preserved Caching 

To determine the effectiveness of the Summary Vector 
and Locality Preserved Caching, we examine the savings 
for disk reads to find duplicate segments using a 
Summary Vector and Locality Preserved Caching. 

We use two internal datasets for our experiment. One is a 
daily full backup of a company-wide Exchange 
information store over a 135-day period.  The other is the 
weekly full and daily incremental backup of an 
Engineering department over a 100-day period. Table 3 
summarizes key attributes of these two datasets. 

These internal datasets are generated from production 
usage (albeit internal). We also observe that various 
compression ratios produced by the internal datasets are 
relatively similar to those of real world examples 
examined in section 5.1. We believe these internal 
datasets are reasonable proxies of real world 
deployments.  

Each of the backup datasets is sent to the deduplicating 
storage system with a single backup stream. With respect 
to the deduplication storage system, we measure the 
number of disk reads for segment index lookups and 
locality prefetches needed to find duplicates during write 
for four cases:  

(1) with neither Summary Vector nor Locality 
Preserved Caching;  

(2) with Summary Vector only;  

(3) with Locality Preserved Caching only; and 

 
Figure 6: Logical/Physical Capacities at Data Center B. 

 
Figure 7: Compression Ratios at Data Center B. 

 

 Min Max Average Standard 
deviation 

Daily global 
compression 5.09 45.16 13.92 9.08 

Daily local 
compression 1.40 4.13 2.33 0.57 

 
Table 2: Statistics on Daily Global and Daily Local 
Compression Ratios at Data Center B 

 Exchange 
data 

Engineering 
data 

Logical capacity (TB) 2.76 2.54 
Physical capacity after 
deduplicating segments 
(TB) 

0.49 0.50 

Global compression 5.69 5.04 
Physical capacity after 
local compression (TB) 

0.22 0.261 

Local compression  2.17 1.93 
Total compression 12.36 9.75 
 
Table 3: Capacities and Compression Ratios on 
Exchange and Engineering Datasets 

 



  

(4) with both Summary Vector and Locality 
Preserved Caching.  

The results are shown in Table 4. 

Clearly, the Summary Vector and Locality Preserved 
Caching combined have produced an astounding 
reduction in disk reads. Summary Vector alone reduces 
about 16.5% and 18.6% of the index lookup disk I/Os for 
exchange and engineering data respectively.  The 
Locality Preserved Caching alone reduces about 82.4% 
and 81% of the index lookup disk I/Os for exchange and 
engineering data respectively.  Together they are able to 
reduce the index lookup disk I/Os by 98.94% and 99.6% 
respectively. 

In general, the Summary Vector is very effective for new 
data, and Locality Preserved Caching is highly effective 
for little or moderately changed data.   For backup data, 
the first full backup (seeding equivalent) does not have 
as many duplicate data segments as subsequent full 
backups.  As a result, the Summary Vector is effective to 
avoid disk I/Os for the index lookups during the first full 
backup, whereas Locality Preserved Caching is highly 
beneficial for subsequent full backups. This result also 
suggests that these two datasets exhibit good duplicate 
locality. 

5.3 Throughput 
To determine the throughput of the deduplication storage 
system, we used a synthetic dataset driven by client 
computers. The synthetic dataset was developed to 
model backup data from multiple backup cycles from 
multiple backup streams, where each backup stream can 
be generated on the same or a different client computer. 

The dataset is made up of synthetic data generated on the 
fly from one or more backup streams. Each backup 
stream is made up of an ordered series of synthetic data 

versions where each successive version (“generation”) is 
a somewhat modified copy of the preceding generation 
in the series. The generation-to-generation modifications 
include: data reordering, deletion of existing data, and 
addition of new data. Single-client backup over time is 
simulated when synthetic data generations from a backup 
stream are written to the deduplication storage system in 
generation order, where significant amounts of data are 
unchanged day-to-day or week-to-week, but where small 
changes continually accumulate. Multi-client backup 
over time is simulated when synthetic data generations 
from multiple streams are written to the deduplication 
system in parallel, each stream in the generation order. 

There are two main advantages of using the synthetic 
dataset.  The first is that various compression ratios can 
be built into the synthetic model, and usages 
approximating various real world deployments can be 
tested easily in house. 

The second is that one can use relatively inexpensive 
client computers to generate an arbitrarily large amount 
of synthetic data in memory without disk I/Os and write 
in one stream to the deduplication system at more than 
100 MB/s. Multiple cheap client computers can combine 
in multiple streams to saturate the intake of the 
deduplication system in a switched network 
environment. We find it both much more costly and 
technically challenging using traditional backup 
software, high-end client computers attached to primary 
storage arrays as backup clients, and high–end servers as 
media/backup servers to accomplish the same feat. 

In our experiments, we choose an average generation 
(daily equivalent) global compression ratio of 30, and an 
average generation (daily equivalent) local compression 
ratio of 2 to 1 for each backup stream. These 
compression numbers seem possible given the real world 
examples in section 5.1. We measure throughput for one 

 

Exchange data Engineering data 
 

# disk I/Os % of total # disk I/Os % of total 
no Summary Vector and 
no Locality Preserved Caching  328,613,503 100.00% 318,236,712 100.00% 

Summary Vector only 274,364,788 83.49% 259,135,171 81.43% 
Locality Preserved Caching only 57,725,844 17.57% 60,358,875 18.97% 
Summary Vector and 
Locality Preserved Caching 3,477,129 1.06% 1,257,316 0.40% 

 

Table 4: Index and locality reads. This table shows the number disk reads to perform index lookups or fetches from the 
container metadata for the four combinations: with and without the Summary Vector and with and without Locality 
Preserved Caching. Without either the Summary Vector or Locality Preserved Caching, there is an index read for every 
segment. The Summary Vector avoids these reads for most new segments. Locality Preserved Caching avoids index 
lookups for duplicate segments at the cost an extra read to fetch a group of segment fingerprints from the container 
metadata for every cache miss for which the segment is found in the index. 



  

backup stream using one client computer and 4 backup 
streams using two client computers for write and read for 
10 generations of the backup datasets.  The results are 
shown in Figures 8 and 9.  

The deduplication system delivers high write throughput 
results for both cases. In the single stream case, the 
system achieves write throughput of 110 MB/sec for 
generation 0 and over 113 MB/sec for generation 1 
through 9.  In the 4 stream case, the system achieves 
write throughput of 139 MB/sec for generation 0 and a 
sustained 217 MB/sec for generation 1 through 9. 

Write throughput for generation 0 is lower because all 
segments are new and require Ziv-Lempel style 
compression by the CPU of the deduplication system. 

The system delivers high read throughput results for the 
single stream case.  Throughout all generations, the 
system achieves over 100 MB/sec read throughput. 

For the 4 stream case, the read throughput is 211 MB/sec 
for generation 0, 192 MB/sec for generation 1, 165 
MB/sec for generation 2, and stay at around 140 MB/sec 
for future generations.  The main reason for the decrease 
of read throughput in the later generations is that future 
generations have more duplicate data segments than the 
first few.  However, the read throughput stays at about 
140 MB/sec for later generations because of Stream-
Informed Segment Layout and Locality Preserved 
Caching. 

Note that write throughput has historically been valued 
more than read throughput for the backup use case since 
backup has to complete within a specified backup 
window time period and it is much more frequent event 
than restore. Read throughput is still very important, 
especially in the case of whole system restores. 

5.4 Discussion 
The techniques presented in this paper are general 
methods to improve throughput performance of 
deduplication storage systems.  Although our system 
divides a data stream into content-based segments, these 
methods can also apply to system using fixed aligned 
segments such as Venti. 

As a side note, we have compared the compression ratios 
of a system segmenting data streams by contents (about 
8Kbytes on average) with another system using fixed 
aligned 8Kbytes segments on the engineering and 
exchange backup datasets.  We found that the fixed 
alignment approach gets basically no global compression 
(global compression: 1.01) for the engineering data, 
whereas the system with content-based segmentation 
gets a lot of global compression (6.39:1). The main 
reason of the difference is that the backup software 
creates the backup dataset without realigning data at file 
boundaries.  For the exchange backup dataset where the 
backup software aligns data at individual mailboxes, the 
global compression difference is less (6.61:1 vs. 
10.28:1), though there is a significant gap.   

Fragmentation will become more severe for long term 
retention, and can reduce the effectiveness of Locality 
Preserved Caching. We have investigated mechanisms to 
reduce fragmentation and sustain high write and read 
throughput. But, these mechanisms are beyond the scope 
of this paper. 

6 Related Work 
Much work on deduplication focused on basic methods 
and compression ratios, not on high throughput. 

Early deduplication storage systems use file-level 
hashing to detect duplicate files and reclaim their storage 
space [ABCC*02, TKSK*03, KDLT04].  Since such 

 
Figure 8: Write Throughput of Single Backup Client and 
4 Backup Clients. 

 
Figure 9: Read Throughput of Single Backup Client and 
4 Backup Clients 

 



  

systems also use file hashes to address files.  Some call 
such systems content addressed storage or CAS.  Since 
their deduplication is at file level, such systems can 
achieve only limited global compression. 

Venti removes duplicate fixed-size data blocks by 
comparing their secure hashes [QD02].  It uses a large 
on-disk index with a straightforward index cache to 
lookup fingerprints.  Since fingerprints have no locality, 
their index cache is not effective.  When using 8 disks to 
lookup fingerprints in parallel, its throughput is still 
limited to less than 7 MB/sec.  Venti used a container 
abstraction to layout data on disks, but was stream 
agnostic, and did not apply Stream-Informed Segment 
Layout. 

To tolerate shifted contents, modern deduplication 
systems remove redundancies at variable-size data 
blocks divided based on their contents. Manber described 
a method to determine anchor points of a large file when 
certain bits of rolling fingerprints are zeros [Man93] and 
showed that Rabin fingerprints [Rab81, Bro93] can be 
computed efficiently. Brin et al. [BDH94] described 
several ways to divide a file into content-based data 
segments and use such segments to detect duplicates in 
digital documents.  Removing duplications at content-
based data segment level has been applied to network 
protocols and applications [SW00, SCPC*02, RLB03, 
MCK04] and has reduced network traffic for distributed 
file systems [MCM01, JDT05]. Kulkarni et al. evaluated 
the compression efficiency between an identity-based 
(fingerprint comparison of variable-length segments) 
approach and a delta-compression approach [KDLT04]. 
These studies have not addressed deduplication 
throughput issues.  

The idea of using Bloom filter [Blo70] to implement the 
Summary Vector is inspired by the summary data 
structure for the proxy cache in [FCAB98].  Their work 
also provided analysis for false positive rate. In addition, 
Broder and Mitzenmacher wrote an excellent survey on 
network applications of Bloom filters [AM02].  TAPER 
system used a Bloom filter to detect duplicates instead of 
detecting if a segment is new [JDT05].  It did not 
investigate throughput issues. 

7 Conclusions 
This paper presents a set of techniques to substantially 
reduce disk I/Os in high-throughput deduplication 
storage systems. 

Our experiments show that the combination of these 
techniques can achieve over 210 MB/sec for 4 multiple 
write data streams and over 140 MB/sec for 4 read data 
streams on storage server with two dual-core processors 
and one shelf of 15 drives. 

We have shown that Summary Vector can reduce disk 
index lookups by about 17% and Locality Preserved 
Caching can reduce disk index lookups by over 80%, but 
the combined caching techniques can reduce disk index 
lookups by about 99%.   

Stream-Informed Segment Layout is an effective 
abstraction to preserve spatial locality and enable 
Locality Preserved Caching.  

These techniques are general methods to improve 
throughput performance of deduplication storage 
systems. Our techniques for minimizing disk I/Os to 
achieve good deduplication performance match well 
against the industry trend of building many-core 
processors. With quad-core CPU’s already available, and 
eight-core CPU’s just around the corner, it will be a 
relatively short time before a large-scale deduplication 
storage system shows up with 400 ~ 800 MB/sec 
throughput with a modest amount of physical memory. 
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