

Avoiding the Disk Bottleneck in the Data Domain Deduplication File System

Benjamin Zhu
Data Domain, Inc.

Kai Li
Data Domain, Inc. and Princeton University

Hugo Patterson
Data Domain, Inc.

Abstract

Disk-based deduplication storage has emerged as the new-generation storage system for enterprise data protection to
replace tape libraries. Deduplication removes redundant data segments to compress data into a highly compact form
and makes it economical to store backups on disk instead of tape. A crucial requirement for enterprise data
protection is high throughput, typically over 100 MB/sec, which enables backups to complete quickly. A significant
challenge is to identify and eliminate duplicate data segments at this rate on a low-cost system that cannot afford
enough RAM to store an index of the stored segments and may be forced to access an on-disk index for every input
segment.

This paper describes three techniques employed in the production Data Domain deduplication file system to relieve
the disk bottleneck. These techniques include: (1) the Summary Vector, a compact in-memory data structure for
identifying new segments; (2) Stream-Informed Segment Layout, a data layout method to improve on-disk locality
for sequentially accessed segments; and (3) Locality Preserved Caching, which maintains the locality of the
fingerprints of duplicate segments to achieve high cache hit ratios. Together, they can remove 99% of the disk
accesses for deduplication of real world workloads. These techniques enable a modern two-socket dual-core system
to run at 90% CPU utilization with only one shelf of 15 disks and achieve 100 MB/sec for single-stream throughput
and 210 MB/sec for multi-stream throughput.

1 Introduction
The massive storage requirements for data protection
have presented a serious problem for data centers.
Typically, data centers perform a weekly full backup of
all the data on their primary storage systems to secondary
storage devices where they keep these backups for weeks
to months. In addition, they may perform daily
incremental backups that copy only the data which has
changed since the last backup. The frequency, type and
retention of backups vary for different kinds of data, but
it is common for the secondary storage to hold 10 to 20
times more data than the primary storage. For disaster
recovery, additional offsite copies may double the
secondary storage capacity needed. If the data is
transferred offsite over a wide area network, the network
bandwidth requirement can be enormous.

Given the data protection use case, there are two main
requirements for a secondary storage system storing
backup data. The first is low cost so that storing backups
and moving copies offsite does not end up costing
significantly more than storing the primary data. The
second is high performance so that backups can complete
in a timely fashion. In many cases, backups must
complete overnight so the load of performing backups
does not interfere with normal daytime usage.

The traditional solution has been to use tape libraries as
secondary storage devices and to transfer physical tapes
for disaster recovery. Tape cartridges cost a small
fraction of disk storage systems and they have good
sequential transfer rates in the neighborhood of 100
MB/sec. But, managing cartridges is a manual process
that is expensive and error prone. It is quite common for
restores to fail because a tape cartridge cannot be located
or has been damaged during handling. Further, random
access performance, needed for data restores, is
extremely poor. Disk-based storage systems and network
replication would be much preferred if they were
affordable.

During the past few years, disk-based, “deduplication”
storage systems have been introduced for data protection
[QD02, MCM01, KDLT04, Dat05, JDT05]. Such
systems compress data by removing duplicate data across
files and often across all the data in a storage system.
Some implementations achieve a 20:1 compression ratio
(total data size divided by physical space used) for 3
months of backup data using the daily-incremental and
weekly-full backup policy. By substantially reducing the
footprint of versioned data, deduplication can make the
costs of storage on disk and tape comparable and make
replicating data over a WAN to a remote site for disaster
recovery practical.

The specific deduplication approach varies among
system vendors. Certainly the different approaches vary
in how effectively they reduce data. But, the goal of this
paper is not to investigate how to get the greatest data
reduction, but rather how to do deduplication at high
speed in order to meet the performance requirement for
secondary storage used for data protection.

The most widely used deduplication method for
secondary storage, which we call Identical Segment
Deduplication, breaks a data file or stream into
contiguous segments and eliminates duplicate copies of
identical segments. Several emerging commercial
systems have used this approach.

The focus of this paper is to show how to implement a
high-throughput Identical Segment Deduplication
storage system at low system cost. The key performance
challenge is finding duplicate segments. Given a segment
size of 8 KB and a performance target of 100 MB/sec, a
deduplication system must process approximately 12,000
segments per second.

An in-memory index of all segment fingerprints could
easily achieve this performance, but the size of the index
would limit system size and increase system cost.
Consider a segment size of 8 KB and a segment
fingerprint size of 20 bytes. Supporting 8 TB worth of
unique segments, would require 20 GB just to store the
fingerprints.

An alternative approach is to maintain an on-disk index
of segment fingerprints and use a cache to accelerate
segment index accesses. Unfortunately, a traditional
cache would not be effective for this workload. Since
fingerprint values are random, there is no spatial locality
in the segment index accesses. Moreover, because the
backup workload streams large data sets through the
system, there is very little temporal locality. Most
segments are referenced just once every week during the
full backup of one particular system. Reference-based
caching algorithms such as LRU do not work well for
such workloads. The Venti system, for example,
implemented such a cache [QD02]. Its combination of
index and block caches only improves its write
throughput by about 16% (from 5.6MB/sec to
6.5MB/sec) even with 8 parallel disk index lookups. The
primary reason is due to its low cache hit ratios.

With low cache hit ratios, most index lookups require
disk operations. If each index lookup requires a disk
access which may take 10 msec and 8 disks are used for
index lookups in parallel, the write throughput will be
about 6.4MB/sec, roughly corresponding to Venti’s
throughput of less than 6.5MB/sec with 8 drives. While
Venti’s performance may be adequate for the archival
usage of a small workgroup, it’s a far cry from the
throughput goal of deduplicating at 100 MB/sec to

compete with high-end tape libraries. Achieving 100
MB/sec, would require 125 disks doing index lookups in
parallel! This would increase the system cost of
deduplication storage to an unattainable level.

Our key idea is to use a combination of three methods to
reduce the need for on-disk index lookups during the
deduplication process. We present in detail each of the
three techniques used in the production Data Domain
deduplication file system. The first is to use a Bloom
filter, which we call a Summary Vector, as the summary
data structure to test if a data segment is new to the
system. It avoids wasted lookups for segments that do
not exist in the index. The second is to store data
segments and their fingerprints in the same order that
they occur in a data file or stream. Such Stream-Informed
Segment Layout (SISL) creates spatial locality for
segment and fingerprint accesses. The third, called
Locality Preserved Caching, takes advantage of the
segment layout to fetch and cache groups of segment
fingerprints that are likely to be accessed together. A
single disk access can result in many cache hits and thus
avoid many on-disk index lookups.

Our evaluation shows that these techniques are effective
in removing the disk bottleneck in an Identical Segment
Deduplication storage system. For a system running on a
server with two dual-core CPUs with one shelf of 15
drives, these techniques can eliminate about 99% of
index lookups for variable-length segments with an
average size of about 8 KB. We show that the system
indeed delivers high throughput: achieving over 100
MB/sec for single-stream write and read performance,
and over 210 MB/sec for multi-stream write
performance. This is an order-of-magnitude throughput
improvement over the parallel indexing techniques
presented in the Venti system.

The rest of the paper is organized as follows. Section 2
presents challenges and observations in designing a
deduplication storage system for data protection. Section
3 describes the software architecture of the production
Data Domain deduplication file system. Section 4
presents our methods for avoiding the disk bottleneck.
Section 5 shows our experimental results. Section 6
gives an overview of the related work, and Section 7
draws conclusions.

2 Challenges and Observations

2.1 Variable vs. Fixed Length Segments
An Identical Segment Deduplication system could
choose to use either fixed length segments or variable
length segments created in a content dependent manner.
Fixed length segments are the same as the fixed-size
blocks of many non-deduplication file systems. For the
purposes of this discussion, extents that are multiples of

some underlying fixed size unit such as a disk sector are
the same as fixed-size blocks.

Variable-length segments can be any number of bytes in
length within some range. They are the result of
partitioning a file or data stream in a content dependent
manner [Man93, BDH94].

The main advantage of a fixed segment size is simplicity.
A conventional file system can create fixed-size blocks
in the usual way and a deduplication process can then be
applied to deduplicate those fixed-size blocks or
segments. The approach is effective at deduplicating
whole files that are identical because every block of
identical files will of course be identical.

In backup applications, single files are backup images
that are made up of large numbers of component files.
These files are rarely entirely identical even when they
are successive backups of the same file system. A single
addition, deletion, or change of any component file can
easily shift the remaining image content. Even if no other
file has changed, the shift would cause each fixed sized
segment to be different than it was last time, containing
some bytes from one neighbor and giving up some bytes
to its other neighbor. The approach of partitioning the
data into variable length segments based on content
allows a segment to grow or shrink as needed so the
remaining segments can be identical to previously stored
segments.

Even for storing individual files, variable length
segments have an advantage. Many files are very similar
to, but not identical to other versions of the same file.
Variable length segments can accommodate these
differences and maximize the number of identical
segments.

Because variable length segments are essential for
deduplication of the shifted content of backup images,
we have chosen them over fixed-length segments.

2.2 Segment Size
Whether fixed or variable sized, the choice of average
segment size is difficult because of its impact on
compression and performance. The smaller the
segments, the more duplicate segments there will be. Put
another way, if there is a small modification to a file, the
smaller the segment, the smaller the new data that must
be stored and the more of the file’s bytes will be in
duplicate segments. Within limits, smaller segments will
result in a better compression ratio.

On the other hand, with smaller segments, there are more
segments to process which reduces performance. At a
minimum, more segments mean more times through the
deduplication loop, but it is also likely to mean more on-
disk index lookups.

With smaller segments, there are more segments to
manage. Since each segment requires the same metadata
size, smaller segments will require more storage
footprint for their metadata, and the segment fingerprints
for fewer total user bytes can be cached in a given
amount of memory. The segment index is larger. There
are more updates to the index. To the extent that any data
structures scale with the number of segments, they will
limit the overall capacity of the system. Since
commodity servers typically have a hard limit on the
amount of physical memory in a system, the decision on
the segment size can greatly affect the cost of the system.

A well-designed duplication storage system should have
the smallest segment size possible given the throughput
and capacity requirements for the product. After several
iterative design processes, we have chosen to use 8 KB
as the average segment size for the variable sized data
segments in our deduplication storage system.

2.3 Performance-Capacity Balance
A secondary storage system used for data protection
must support a reasonable balance between capacity and
performance. Since backups must complete within a
fixed backup window time, a system with a given
performance can only backup so much data within the
backup window. Further, given a fixed retention period
for the data being backed up, the storage system needs
only so much capacity to retain the backups that can
complete within the backup window. Conversely, given a
particular storage capacity, backup policy, and
deduplication efficiency, it is possible to compute the
throughput that the system must sustain to justify the
capacity. This balance between performance and
capacity motivates the need to achieve good system
performance with only a small number of disk drives.

Assuming a backup policy of weekly fulls and daily
incrementals with a retention period of 15 weeks and a
system that achieves a 20x compression ratio storing
backups for such a policy, as a rough rule of thumb, it
requires approximately as much capacity as the primary
data to store all the backup images. That is, for 1 TB of
primary data, the deduplication secondary storage would
consume approximately 1 TB of physical capacity to
store the 15 weeks of backups.

Weekly full backups are commonly done over the
weekend with a backup window of 16 hours. The
balance of the weekend is reserved for restarting failed
backups or making additional copies. Using the rule of
thumb above, 1 TB of capacity can protect
approximately 1 TB of primary data. All of that must be
backed up within the 16-hour backup window which
implies a throughput of about 18 MB/sec per terabyte of
capacity.

Following this logic, a system with a shelf of 15 SATA
drives each with a capacity of 500 GB and a total usable
capacity after RAID, spares, and other overhead of 6 TB
could protect 6 TB of primary storage and must therefore
be able to sustain over 100 MB/sec of deduplication
throughput.

2.4 Fingerprint vs. Byte Comparisons
An Identical Segment Deduplication storage system
needs a method to determine that two segments are
identical. This could be done with a byte by byte
comparison of the newly written segment with the
previously stored segment. However, such a comparison
is only possible by first reading the previously stored
segment from disk. This would be much more onerous
than looking up a segment in an index and would make it
extremely difficult if not impossible to maintain the
needed throughput.

To avoid this overhead, we rely on comparisons of
segment fingerprints to determine the identity of a
segment. The fingerprint is a collision-resistant hash
value computed over the content of each segment. SHA-
1 is such a collision-resistant function [NIST95]. At a
160-bit output value, the probability of fingerprint
collision by a pair of different segments is extremely
small, many orders of magnitude smaller than hardware
error rates [QD02]. When data corruption occurs, it will
almost certainly be the result of undetected errors in
RAM, IO busses, network transfers, disk storage devices,
other hardware components or software errors and not
from a collision.

3 Deduplication Storage System
Architecture

To provide the context for presenting our methods for
avoiding the disk bottleneck, this section describes the
architecture of the production Data Domain File System,
DDFS, for which Identical Segment Deduplication is an
integral feature. Note that the methods presented in the
next section are general and can apply to other Identical
Segment Deduplication storage systems.

At the highest level, DDFS breaks a file into variable-
length segments in a content dependent manner [Man93,
BDH94] and computes a fingerprint for each segment.
DDFS uses the fingerprints both to identify duplicate
segments and as part of a segment descriptor used to
reference a segment. It represents files as sequences of
segment fingerprints. During writes, DDFS identifies
duplicate segments and does its best to store only one
copy of any particular segment. Before storing a new
segment, DDFS uses a variation of the Ziv-Lempel
algorithm to compress the segment [ZL77].

Figure 1 is a block diagram of DDFS, which is made up
of a stack of software components. At the top of the
stack, DDFS supports multiple access protocols which
are layered on a common File Services interface.
Supported protocols include NFS, CIFS, and a virtual
tape library interface (VTL).

When a data stream enters the system, it goes through
one of the standard interfaces to the generic File Services
layer, which manages the name space and file metadata.
The File Services layer forwards write requests to
Content Store which manages the data content within a
file. Content Store breaks a data stream into segments,
uses Segment Store to perform deduplication, and keeps
track of the references for a file. Segment Store does the
actual work of deduplication. It packs deduplicated
(unique) segments into relatively large units, compresses
such units using a variation of Ziv-Lempel algorithm to
further compress the data, and then writes the
compressed results into containers supported by
Container Manager.

To read a data stream from the system, a client drives the
read operation through one of the standard interfaces and
the File Services Layer. Content Store uses the
references to deduplicated segments to deliver the
desired data stream to the client. Segment Store
prefetches, decompresses, reads and caches data
segments from Container Manager.

The following describes the Content Store, Segment
Store and the Container Manager in detail and discusses
our design decisions.

3.1 Content Store
Content Store implements byte-range writes and reads
for deduplicated data objects, where an object is a linear

Figure 1: Data Domain File System architecture.

sequence of client data bytes and has intrinsic and client-
settable attributes or metadata. An object may be a
conventional file, a backup image of an entire volume or
a tape cartridge.

To write a range of bytes into an object, Content Store
performs several operations.

• Anchoring partitions the byte range into variable-
length segments in a content dependent manner
[Man93, BDH94].

• Segment fingerprinting computes the SHA-1 hash
and generates the segment descriptor based on it.
Each segment descriptor contains per segment
information of at least fingerprint and size

• Segment mapping builds the tree of segments that
records the mapping between object byte ranges and
segment descriptors. The goal is to represent a data
object using references to deduplicated segments.

To read a range of bytes in an object, Content Store
traverses the tree of segments created by the segment
mapping operation above to obtain the segment
descriptors for the relevant segments. It fetches the
segments from Segment Store and returns the requested
byte range to the client.

3.2 Segment Store
Segment Store is essentially a database of segments
keyed by their segment descriptors. To support writes, it
accepts segments with their segment descriptors and
stores them. To support reads, it fetches segments
designated by their segment descriptors.

To write a data segment, Segment Store performs several
operations.

• Segment filtering determines if a segment is a
duplicate. This is the key operation to deduplicate
segments and may trigger disk I/Os, thus its
overhead can significantly impact throughput
performance.

• Container packing adds segments to be stored to a
container which is the unit of storage in the system.
The packing operation also compresses segment data
using a variation of the Ziv-Lempel algorithm. A
container, when fully packed, is appended to the
Container Manager.

• Segment Indexing updates the segment index that
maps segment descriptors to the container holding
the segment, after the container has been appended
to the Container Manager.

To read a data segment, Segment Store performs the
following operations.

• Segment lookup finds the container storing the
requested segment. This operation may trigger disk
I/Os to look in the on-disk index, thus it is
throughput sensitive.

• Container retrieval reads the relevant portion of the
indicated container by invoking the Container
Manager.

• Container unpacking decompresses the retrieved
portion of the container and returns the requested
data segment.

3.3 Container Manager
The Container Manager provides a storage container log
abstraction, not a block abstraction, to Segment Store.
Containers, shown in Figure 2, are self-describing in that
a metadata section includes the segment descriptors for
the stored segments. They are immutable in that new
containers can be appended and old containers deleted,
but containers cannot be modified once written. When
Segment Store appends a container, the Container
Manager returns a container ID which is unique over the
life of the system.

The Container Manager is responsible for allocating,
deallocating, reading, writing and reliably storing
containers. It supports reads of the metadata section or a
portion of the data section, but it only supports appends
of whole containers. If a container is not full but needs to
be written to disk, it is padded out to its full size.

Container Manager is built on top of standard block
storage. Advanced techniques such as Software RAID-6,
continuous data scrubbing, container verification, and
end to end data checks are applied to ensure a high level
of data integrity and reliability.

The container abstraction offers several benefits.

 Metadata

section
Metadata

section

Metadata

section

Data

section

Data

section
Data

section

… …

Metadata

section
Metadata

section

Metadata

section

Data

section

Data

section
Data

section

… …

Figure 2: Containers are self-describing, immutable,
units of storage several megabytes in size. All segments
are stored in containers.

• The fixed container size makes container allocation
and deallocation easy.

• The large granularity of a container write achieves
high disk throughput utilization.

• A properly sized container size allows efficient full-
stripe RAID writes, which enables an efficient
software RAID implementation at the storage layer.

4 Acceleration Methods
This section presents three methods to accelerate the
deduplication process in our deduplication storage
system: summary vector, stream-informed data layout,
and locality preserved caching. The combination of
these methods allows our system to avoid about 99% of
the disk I/Os required by a system relying on index
lookups alone. The following describes each of the three
techniques in detail.

4.1 Summary Vector
The purpose of the Summary Vector is to reduce the
number of times that the system goes to disk to look for a
duplicate segment only to find that none exists. One can
think of the Summary Vector as an in-memory,
conservative summary of the segment index. If the
Summary Vector indicates a segment is not in the index,
then there is no point in looking further for the segment;
the segment is new and should be stored. On the other
hand, being only an approximation of the index, if the
Summary Vector indicates the segment is in the index,
there is a high probability that the segment is actually in
the segment index, but there is no guarantee.

The Summary Vector implements the following
operations:

• Init()

• Insert(fingerprint)

• Lookup(fingerprint)

We use a Bloom filter to implement the Summary Vector
in our current design [Blo70]. A Bloom filter uses a
vector of m bits to summarize the existence information
about n fingerprints in the segment index. In Init(),
all bits are set to 0. Insert(a) uses k independent
hashing functions, h 1 , …, hk, each mapping a fingerprint
a to [0, m -1] and sets the bits at position h1(a), …, hk (a)
to 1. For any fingerprint x, Lookup(x) will check all
bits at position h 1(x) , …, h k(x) to see if they are all set
to 1. If any of the bits is 0, then we know x is definitely
not in the segment index. Otherwise, with high
probability, x will be in the segment index, assuming
reasonable choices of m, n, and k. Figure 3 illustrates the
operations of Summary Vector.

As indicated in [FCAB98], the probability of false
positive for an element not in the set, or the false positive
rate, can be calculated in a straightforward fashion,
given our assumption that hash functions are perfectly
random. After all n elements hashed and inserted into the
Bloom filter, the probability that a specific bit is still 0 is

.
1

1
/mkn

kn

e
m

!
="

#

$
%
&

'
!

The probability of false positive is then:

k

m
kn

k
kn

e
m

!
"
#$

%
& '(

!
!

"

#

$
$

%

&
!
"

#
$
%

&
''

'
1

1
11 .

Using this formula, one can derive a particular parameter
to achieve a given false positive rate. For example, to
achieve 2% false positive rate, the smallest size of the
Summary Vector is 8 × n bits (m/n = 8) and the number
of hash functions can be 4 (k = 4).

To have a fairly small probability of false positive such
as a fraction of a percent, we choose m such that m/n is
about 8 for a target goal of n and k around 4 or 5. For
example, supporting one billion base segments requires
about 1 GB of memory for the Summary Vector.

At system shutdown the system writes the Summary
Vector to disk. At startup, it reads in the saved copy. To
handle power failures and other kinds of unclean
shutdowns, the system periodically checkpoints the

Figure 3: Summary Vector operations. The Summary
Vector can identify most new segments without looking
up the segment index. Initially all bits in the array are 0.
On insertion, shown in (a), bits specified by several
hashes, h1, h2, and h3 of the fingerprint of the segment
are set to 1. On lookup, shown in (b), the bits specified by
the same hashes are checked. If any are 0, as shown in
this case, the segment cannot be in the system.

Summary Vector to disk. To recover, the system loads
the most recent checkpoint of the Summary Vector and
then processes the containers appended to the container
log since the checkpoint, adding the contained segments
to the Summary Vector.

Although several variations of Bloom filters have been
proposed during the past few years [BM05], we have
chosen the basic Bloom Filter for simplicity and efficient
implementation.

4.2 Stream-Informed Segment Layout
We use Stream-Informed Segment Layout (SISL) to
create spatial locality for both segment data and segment
descriptors and to enable Locality Preserved Caching as
described in the next section. A stream here is just the
sequence of bytes that make up a backup image stored in
a Content Store object.

Our main observation is that in backup applications,
segments tend to reappear in the same of very similar
sequences with other segments. Consider a 1 MB file
with a hundred or more segments. Every time that file is
backed up, the same sequence of a hundred segments
will appear. If the file is modified slightly, there will be
some new segments, but the rest will appear in the same
order. When new data contains a duplicate segment x,
there is a high probability that other segments in its
locale are duplicates of the neighbors of x. We call this
property segment duplicate locality. SISL is designed to
preserve this locality.

Content Store and Segment Store support a stream
abstraction that segregates the segments created for
different objects, preserves the logical ordering of
segments within the Content Store object, and dedicates
containers to hold segments for a single stream in their
logical order. The metadata sections of these containers
store segment descriptors in their logical order. Multiple
streams can be written to Segment Store in parallel, but
the stream abstraction prevents the segments for the
different streams from being jumbled together in a
container.

The design decision to make the deduplication storage
system stream aware is a significant distinction from
other systems such as Venti.

When an object is opened for writing, Content Store
opens a corresponding stream with Segment Store which
in turn assigns a container to the stream. Content Store
writes ordered batches of segments for the object to the
stream. Segment Store packs the new segments into the
data section of the dedicated container, performs a
variation of Ziv-Lempel compression on the data section,
and writes segment descriptors into the metadata section
of the container. When the container fills up, it appends
it with Container Manager and starts a new container for

the stream. Because multiple streams can write to
Segment Store in parallel, there may be multiple open
containers, one for each active stream.

The end result is Stream-Informed Segment Layout or
SISL, because for a data stream, new data segments are
stored together in the data sections, and their segment
descriptors are stored together in the metadata section.

SISL offers many benefits.

• When multiple segments of the same data stream are
written to a container together, many fewer disk I/Os
are needed to reconstruct the stream which helps the
system achieve high read throughput.

• Descriptors and compressed data of adjacent new
segments in the same stream are packed linearly in
the metadata and data sections respectively in the
same container. This packing captures duplicate
locality for future streams resembling this stream,
and enables Locality Preserved Caching to work
effectively.

• The metadata section is stored separately from the
data section, and is generally much smaller than the
data section. For example, a container size of 4 MB,
an average segment size of 8 KB, and a Ziv-Lempel
compression ratio of 2, yield about 1K segments in a
container, and require a metadata section size of just
about 64 KB, at a segment descriptor size of 64
bytes. The small granularity on container metadata
section reads allows Locality Preserved Caching in a
highly efficient manner: 1K segments can be cached
using a single small disk I/O. This contrasts to the
old way of one on-disk index lookup per segment.

These advantages make SISL an effective mechanism for
deduplicating multiple-stream fine-grained data
segments. Packing containers in a stream aware fashion
distinguishes our system from Venti and many other
systems.

4.3 Locality Preserved Caching
We use Locality Preserved Caching (LPC) to accelerate
the process of identifying duplicate segments.

A traditional cache does not work well for caching
fingerprints, hashes, or descriptors for duplicate
detection because fingerprints are essentially random.
Since it is difficult to predict the index location for next
segment without going through the actual index access
again, the miss ratio of a traditional cache will be
extremely high.

We apply LPC to take advantage of segment duplicate
locality so that if a segment is a duplicate, the base
segment is highly likely cached already. LPC is achieved

by combining the container abstraction with a segment
cache as discussed next.

For segments that cannot be resolved by the Summary
Vector and LPC, we resort to looking up the segment in
the segment index. We have two goals on this retrieval:

• Making this retrieval a relatively rare occurrence.

• Whenever the retrieval is made, it benefits segment
filtering of future segments in the locale.

LPC implements a segment cache to cache likely base
segment descriptors for future duplicate segments. The
segment cache maps a segment fingerprint to its
corresponding container ID. Our main idea is to
maintain the segment cache by groups of fingerprints.
On a miss, LPC will fetch the entire metadata section in
a container, insert all fingerprints in the metadata section
into the cache, and remove all fingerprints of an old
metadata section from the cache together. This method
will preserve the locality of fingerprints of a container in
the cache.

The operations for the segment cache are:

• Init(): Initialize the segment cache.
• Insert(container): Iterate through all

segment descriptors in container metadata section,
and insert each descriptor and container ID into the
segment cache.

• Remove(container): Iterate through all
segment descriptors in container metadata section,
and remove each descriptor and container ID from
the segment cache.

• Lookup(fingerprint): Find the corresponding
container ID for the fingerprint specified.

Descriptors of all segments in a container are added or
removed from the segment cache at once. Segment
caching is typically triggered by a duplicate segment that
misses in the segment cache, and requires a lookup in the
segment index. As a side effect of finding the
corresponding container ID in the segment index, we
prefetch all segment descriptors in this container to the
segment cache. We call this Locality Preserved Caching.
The intuition is that base segments in this container are
likely to be checked against for future duplicate
segments, based on segment duplicate locality. Our
results on real world data have validated this intuition
overwhelmingly.

We have implemented the segment cache using a hash
table. When the segment cache is full, containers that are
ineffective in accelerating segment filtering are leading
candidates for replacement from the segment cache. A
reasonable cache replacement policy is Least-Recently-
Used (LRU) on cached containers.

4.4 Accelerated Segment Filtering
We have combined all three techniques above in the
segment filtering phase of our implementation.

For an incoming segment for write, the algorithm does
the following:

• Checks to see if it is in the segment cache. If it is in
the cache, the incoming segment is a duplicate.

• If it is not in the segment cache, check the Summary
Vector. If it is not in the Summary Vector, the
segment is new. Write the new segment into the
current container.

• If it is in the Summary Vector, lookup the segment
index for its container Id. If it is in the index, the
incoming segment is a duplicate; insert the metadata
section of the container into the segment cache. If
the segment cache is full, remove the metadata
section of the least recently used container first.

• If it is not in the segment index, the segment is new.
Write the new segment into the current container.

We aim to keep the segment index lookup to a minimum
in segment filtering.

5 Experimental Results
We would like to answer the following questions:

• How well does the deduplication storage system
work with real world datasets?

• How effective are the three techniques in terms of
reducing disk I/O operations?

• What throughput can a deduplication storage system
using these techniques achieve?

For the first question, we will report our results with real
world data from two customer data centers. For the next
two questions, we conducted experiments with several
internal datasets. Our experiments use a Data Domain
DD580 deduplication storage system as an NFS v3
server [PJSS*94]. This deduplication system features
two-socket duel-core CPU’s running at 3 Ghz, a total of
8 GB system memory, 2 gigabit NIC cards, and a 15-
drive disk subsystem running software RAID6 with one
spare drive. We use 1 and 4 backup client computers
running NFS v3 client for sending data.

5.1 Results with Real World Data
The system described in this paper has been used at over
1,000 data centers. The following paragraphs report the
deduplication results from two data centers, generated
from the auto-support mechanism of the system.

Data center A backs up structured database data over the
course of 31 days during the initial deployment of a
deduplication system. The backup policy is to do daily
full backups, where each full backup produces over 600
GB at steady state. There are two exceptions:

• During the initial seeding phase (until 6th day in this
example), different data or different types of data are
rolled into the backup set, as backup administrators
figure out how they want to use the deduplication
system. A low rate of duplicate segment
identification and elimination is typically associated
with the seeding phase.

• There are certain days (18th day in this example)
when no backup is generated.

Figure 4 shows the logical capacity (the amount of data
from user or backup application perspective) and the
physical capacity (the amount of data stored in disk
media) of the system over time at data center A.

At the end of 31st day, the data center has backed up
about 16.9 TB, and the corresponding physical capacity
is less than 440 GB, reaching a total compression ratio of
38.54 to 1.

Figure 5 shows daily global compression ratio (the daily
rate of data reduction due to duplicate segment
elimination), daily local compression ratio (the daily rate
of data reduction due to Ziv-Lempel style compression

on new segments), cumulative global compression ratio
(the cumulative ratio of data reduction due to duplicate
segment elimination), and cumulative total compression
ratio (the cumulative ratio of data reduction due to
duplicate segment elimination and Ziv-Lempel style
compression on new segments) over time.

At the end of 31st day, cumulative global compression
ratio reaches 22.53 to 1, and cumulative total
compression ratio reaches 38.54 to 1.

The daily global compression ratios change quite a bit
over time, whereas the daily local compression ratios are
quite stable. Table 1 summarizes the minimum,
maximum, average, and standard deviation of both daily
global and daily local compression ratios, excluding
seeding (the first 6) days and no backup (18th) day.

Data center B backs up a mixture of structured database
and unstructured file system data over the course of 48
days during the initial deployment of a deduplication
system using both full and incremental backups. Similar
to that in data center A, seeding lasts until the 6th day,
and there are a few days without backups (8th, 12-14th,
35th days). Outside these days, the maximum daily
logical backup size is about 2.1 TB, and the smallest size
is about 50 GB.

Figure 6 shows the logical capacity and the physical
capacity of the system over time at data center B.

At the end of 48th day, the logical capacity reaches about
41.4 TB, and the corresponding physical capacity is
about 3.0 TB. The total compression ratio is 13.71 to 1.

Figure 7 shows daily global compression ratio, daily
local compression ratio, cumulative global compression
ratio, and cumulative total compression ratio over time.

At the end of 48th day, cumulative global compression
reaches 6.85, while cumulative total compression reaches
13.71.

Figure 4: Logical/Physical Capacities at Data Center A

 Min Max Average Standard
deviation

Daily global
compression 10.05 74.31 40.63 13.73

Daily local
compression 1.58 1.97 1.78 0.09

Table 1: Statistics on Daily Global and Daily Local
Compression Ratios at Data Center A

Figure 5: Compression Ratios at Data Center A

Table 2 summarizes the minimum, maximum, average,
and standard deviation of both daily global and daily
local compression ratios, excluding seeding and days
without backup.

The two sets of results show that the deduplication
storage system works well with the real world datasets.
As expected, both cumulative global and cumulative
total compression ratios increase as the system holds
more backup data.

During seeding, duplicate segment elimination tends to
be ineffective, because most segments are new. After
seeding, despite the large variation in the actual number,
duplicate segment elimination becomes extremely

effective. Independent of seeding, Ziv-Lempel style
compression is relatively stable, giving a reduction of
about 2 over time. The real world observations on the
applicability of duplicate segment elimination during
seeding and after seeding are particularly relevant in
evaluating our techniques to reduce disk accesses below.

5.2 I/O Savings with Summary Vector and
Locality Preserved Caching

To determine the effectiveness of the Summary Vector
and Locality Preserved Caching, we examine the savings
for disk reads to find duplicate segments using a
Summary Vector and Locality Preserved Caching.

We use two internal datasets for our experiment. One is a
daily full backup of a company-wide Exchange
information store over a 135-day period. The other is the
weekly full and daily incremental backup of an
Engineering department over a 100-day period. Table 3
summarizes key attributes of these two datasets.

These internal datasets are generated from production
usage (albeit internal). We also observe that various
compression ratios produced by the internal datasets are
relatively similar to those of real world examples
examined in section 5.1. We believe these internal
datasets are reasonable proxies of real world
deployments.

Each of the backup datasets is sent to the deduplicating
storage system with a single backup stream. With respect
to the deduplication storage system, we measure the
number of disk reads for segment index lookups and
locality prefetches needed to find duplicates during write
for four cases:

(1) with neither Summary Vector nor Locality
Preserved Caching;

(2) with Summary Vector only;

(3) with Locality Preserved Caching only; and

Figure 6: Logical/Physical Capacities at Data Center B.

Figure 7: Compression Ratios at Data Center B.

 Min Max Average Standard
deviation

Daily global
compression 5.09 45.16 13.92 9.08

Daily local
compression 1.40 4.13 2.33 0.57

Table 2: Statistics on Daily Global and Daily Local
Compression Ratios at Data Center B

 Exchange
data

Engineering
data

Logical capacity (TB) 2.76 2.54
Physical capacity after
deduplicating segments
(TB)

0.49 0.50

Global compression 5.69 5.04
Physical capacity after
local compression (TB)

0.22 0.261

Local compression 2.17 1.93
Total compression 12.36 9.75

Table 3: Capacities and Compression Ratios on
Exchange and Engineering Datasets

(4) with both Summary Vector and Locality
Preserved Caching.

The results are shown in Table 4.

Clearly, the Summary Vector and Locality Preserved
Caching combined have produced an astounding
reduction in disk reads. Summary Vector alone reduces
about 16.5% and 18.6% of the index lookup disk I/Os for
exchange and engineering data respectively. The
Locality Preserved Caching alone reduces about 82.4%
and 81% of the index lookup disk I/Os for exchange and
engineering data respectively. Together they are able to
reduce the index lookup disk I/Os by 98.94% and 99.6%
respectively.

In general, the Summary Vector is very effective for new
data, and Locality Preserved Caching is highly effective
for little or moderately changed data. For backup data,
the first full backup (seeding equivalent) does not have
as many duplicate data segments as subsequent full
backups. As a result, the Summary Vector is effective to
avoid disk I/Os for the index lookups during the first full
backup, whereas Locality Preserved Caching is highly
beneficial for subsequent full backups. This result also
suggests that these two datasets exhibit good duplicate
locality.

5.3 Throughput
To determine the throughput of the deduplication storage
system, we used a synthetic dataset driven by client
computers. The synthetic dataset was developed to
model backup data from multiple backup cycles from
multiple backup streams, where each backup stream can
be generated on the same or a different client computer.

The dataset is made up of synthetic data generated on the
fly from one or more backup streams. Each backup
stream is made up of an ordered series of synthetic data

versions where each successive version (“generation”) is
a somewhat modified copy of the preceding generation
in the series. The generation-to-generation modifications
include: data reordering, deletion of existing data, and
addition of new data. Single-client backup over time is
simulated when synthetic data generations from a backup
stream are written to the deduplication storage system in
generation order, where significant amounts of data are
unchanged day-to-day or week-to-week, but where small
changes continually accumulate. Multi-client backup
over time is simulated when synthetic data generations
from multiple streams are written to the deduplication
system in parallel, each stream in the generation order.

There are two main advantages of using the synthetic
dataset. The first is that various compression ratios can
be built into the synthetic model, and usages
approximating various real world deployments can be
tested easily in house.

The second is that one can use relatively inexpensive
client computers to generate an arbitrarily large amount
of synthetic data in memory without disk I/Os and write
in one stream to the deduplication system at more than
100 MB/s. Multiple cheap client computers can combine
in multiple streams to saturate the intake of the
deduplication system in a switched network
environment. We find it both much more costly and
technically challenging using traditional backup
software, high-end client computers attached to primary
storage arrays as backup clients, and high–end servers as
media/backup servers to accomplish the same feat.

In our experiments, we choose an average generation
(daily equivalent) global compression ratio of 30, and an
average generation (daily equivalent) local compression
ratio of 2 to 1 for each backup stream. These
compression numbers seem possible given the real world
examples in section 5.1. We measure throughput for one

Exchange data Engineering data

disk I/Os % of total # disk I/Os % of total
no Summary Vector and
no Locality Preserved Caching 328,613,503 100.00% 318,236,712 100.00%

Summary Vector only 274,364,788 83.49% 259,135,171 81.43%
Locality Preserved Caching only 57,725,844 17.57% 60,358,875 18.97%
Summary Vector and
Locality Preserved Caching 3,477,129 1.06% 1,257,316 0.40%

Table 4: Index and locality reads. This table shows the number disk reads to perform index lookups or fetches from the
container metadata for the four combinations: with and without the Summary Vector and with and without Locality
Preserved Caching. Without either the Summary Vector or Locality Preserved Caching, there is an index read for every
segment. The Summary Vector avoids these reads for most new segments. Locality Preserved Caching avoids index
lookups for duplicate segments at the cost an extra read to fetch a group of segment fingerprints from the container
metadata for every cache miss for which the segment is found in the index.

backup stream using one client computer and 4 backup
streams using two client computers for write and read for
10 generations of the backup datasets. The results are
shown in Figures 8 and 9.

The deduplication system delivers high write throughput
results for both cases. In the single stream case, the
system achieves write throughput of 110 MB/sec for
generation 0 and over 113 MB/sec for generation 1
through 9. In the 4 stream case, the system achieves
write throughput of 139 MB/sec for generation 0 and a
sustained 217 MB/sec for generation 1 through 9.

Write throughput for generation 0 is lower because all
segments are new and require Ziv-Lempel style
compression by the CPU of the deduplication system.

The system delivers high read throughput results for the
single stream case. Throughout all generations, the
system achieves over 100 MB/sec read throughput.

For the 4 stream case, the read throughput is 211 MB/sec
for generation 0, 192 MB/sec for generation 1, 165
MB/sec for generation 2, and stay at around 140 MB/sec
for future generations. The main reason for the decrease
of read throughput in the later generations is that future
generations have more duplicate data segments than the
first few. However, the read throughput stays at about
140 MB/sec for later generations because of Stream-
Informed Segment Layout and Locality Preserved
Caching.

Note that write throughput has historically been valued
more than read throughput for the backup use case since
backup has to complete within a specified backup
window time period and it is much more frequent event
than restore. Read throughput is still very important,
especially in the case of whole system restores.

5.4 Discussion
The techniques presented in this paper are general
methods to improve throughput performance of
deduplication storage systems. Although our system
divides a data stream into content-based segments, these
methods can also apply to system using fixed aligned
segments such as Venti.

As a side note, we have compared the compression ratios
of a system segmenting data streams by contents (about
8Kbytes on average) with another system using fixed
aligned 8Kbytes segments on the engineering and
exchange backup datasets. We found that the fixed
alignment approach gets basically no global compression
(global compression: 1.01) for the engineering data,
whereas the system with content-based segmentation
gets a lot of global compression (6.39:1). The main
reason of the difference is that the backup software
creates the backup dataset without realigning data at file
boundaries. For the exchange backup dataset where the
backup software aligns data at individual mailboxes, the
global compression difference is less (6.61:1 vs.
10.28:1), though there is a significant gap.

Fragmentation will become more severe for long term
retention, and can reduce the effectiveness of Locality
Preserved Caching. We have investigated mechanisms to
reduce fragmentation and sustain high write and read
throughput. But, these mechanisms are beyond the scope
of this paper.

6 Related Work
Much work on deduplication focused on basic methods
and compression ratios, not on high throughput.

Early deduplication storage systems use file-level
hashing to detect duplicate files and reclaim their storage
space [ABCC*02, TKSK*03, KDLT04]. Since such

Figure 8: Write Throughput of Single Backup Client and
4 Backup Clients.

Figure 9: Read Throughput of Single Backup Client and
4 Backup Clients

systems also use file hashes to address files. Some call
such systems content addressed storage or CAS. Since
their deduplication is at file level, such systems can
achieve only limited global compression.

Venti removes duplicate fixed-size data blocks by
comparing their secure hashes [QD02]. It uses a large
on-disk index with a straightforward index cache to
lookup fingerprints. Since fingerprints have no locality,
their index cache is not effective. When using 8 disks to
lookup fingerprints in parallel, its throughput is still
limited to less than 7 MB/sec. Venti used a container
abstraction to layout data on disks, but was stream
agnostic, and did not apply Stream-Informed Segment
Layout.

To tolerate shifted contents, modern deduplication
systems remove redundancies at variable-size data
blocks divided based on their contents. Manber described
a method to determine anchor points of a large file when
certain bits of rolling fingerprints are zeros [Man93] and
showed that Rabin fingerprints [Rab81, Bro93] can be
computed efficiently. Brin et al. [BDH94] described
several ways to divide a file into content-based data
segments and use such segments to detect duplicates in
digital documents. Removing duplications at content-
based data segment level has been applied to network
protocols and applications [SW00, SCPC*02, RLB03,
MCK04] and has reduced network traffic for distributed
file systems [MCM01, JDT05]. Kulkarni et al. evaluated
the compression efficiency between an identity-based
(fingerprint comparison of variable-length segments)
approach and a delta-compression approach [KDLT04].
These studies have not addressed deduplication
throughput issues.

The idea of using Bloom filter [Blo70] to implement the
Summary Vector is inspired by the summary data
structure for the proxy cache in [FCAB98]. Their work
also provided analysis for false positive rate. In addition,
Broder and Mitzenmacher wrote an excellent survey on
network applications of Bloom filters [AM02]. TAPER
system used a Bloom filter to detect duplicates instead of
detecting if a segment is new [JDT05]. It did not
investigate throughput issues.

7 Conclusions
This paper presents a set of techniques to substantially
reduce disk I/Os in high-throughput deduplication
storage systems.

Our experiments show that the combination of these
techniques can achieve over 210 MB/sec for 4 multiple
write data streams and over 140 MB/sec for 4 read data
streams on storage server with two dual-core processors
and one shelf of 15 drives.

We have shown that Summary Vector can reduce disk
index lookups by about 17% and Locality Preserved
Caching can reduce disk index lookups by over 80%, but
the combined caching techniques can reduce disk index
lookups by about 99%.

Stream-Informed Segment Layout is an effective
abstraction to preserve spatial locality and enable
Locality Preserved Caching.

These techniques are general methods to improve
throughput performance of deduplication storage
systems. Our techniques for minimizing disk I/Os to
achieve good deduplication performance match well
against the industry trend of building many-core
processors. With quad-core CPU’s already available, and
eight-core CPU’s just around the corner, it will be a
relatively short time before a large-scale deduplication
storage system shows up with 400 ~ 800 MB/sec
throughput with a modest amount of physical memory.

8 References
[ABCC*02] A. Adya, W. J. Bolosky, M. Castro, G.

Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. P. Wattenhofer.
FARSITE: Federated, available, and reliable storage
for an incompletely trusted environment. In
Proceedings of USENIX Operating Systems Design
and Implementation (OSDI), December 2002.

[BM05] Andrie Z. Broder and Michael Mitzenmacher.
Network Applications of Bloom Filters: A Survey.
Internet Mathematics, 2005.

[BDH94] S. Brin, J. Davis, H. Carcia-Molina. Copy
Detection Mechanisms for Digital Documents
(weblink). 1994, also lso in Proceedings of ACM
SIGMOD, 1995.

[Blo70] Burton H. Bloom. Space/time Trade-offs in
Hash Coding with Allowable Errors.
Communications of the ACM, 13 (7). 422-426.

[JDT05] N. Jain, M. Dahlin, and R. Tewari. TAPER:
Tiered Approach for Eliminating Redundancy in
Replica Synchronization. In Proceedings of USENIX
File And Storage Systems (FAST), 2005.

[Dat05] Data Domain, Data Domain Appliance Series:
High-Speed Inline Deduplication Storage, 2005,
http://www.datadomain.com/products/appliances.htm
l

[FCAB98] Li Fan, Pei Cao, Jussara Almeida, and Andrie
Z. Broder. Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol. in Proceedings of ACM
SIGCOMM'98, (Vancouver, Canada, 1998).

[KDLT04] P. Kulkarni, F. Douglis, J. D. LaVoie, J. M.
Tracey: Redundancy Elimination Within Large
Collections of Files. In Proceedings of USENIX
Annual Technical Conference, pages 59-72, 2004.

[Man93] Udi Manber. Finding Similar Files in A Large
File System. Technical Report TR 93-33,
Department of Computer Science, University of
Arizona, October 1993, also in Proceedings of the
USENIX Winter 1994 Technical Conference, pages
17–21. 1994.

[MCK04] J. C. Mogul, Y.-M. Chan, and T. Kelly.
Design, implementation, and evaluation of duplicate
transfer detection in HTTP. In Proceedings of
Network Systems Design and Implementation, 2004.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and
David Mazières. A Low-bandwidth Network File
System. In Proceedings of the ACM 18th Symposium
on Operating Systems Principles. Banff, Canada.
October, 2001.

[NIST95] National Institute of Standards and
Technology, FIPS 180-1. Secure Hash Standard. US
Department of Commerce, April 1995.

 [PJSS*94] B. Pawlowski, C. Juszczak, P. Staubach, C.
Smith, D. Lebel, and D. Hitz, NFS Version 3 Design
and Implementation, In Proceedings of the USENIX
Summer 1994 Technical Conference. 1994.

[QD02] S. Quinlan and S. Dorward, Venti: A New
Approach to Archival Storage. In Proceedings of the
USENIX Conference on File And Storage
Technologies (FAST), January 2002.

[RLB03] S. C. Rhea, K. Liang, and E. Brewer. Value-
based web caching. In WWW, pages 619–628, 2003.

[SCPC*02] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J.
Chow, M. S. Lam, and M. Rosenblum. Optimizing
the migration of virtual computers. In Proceedings of
USENIX Operating Systems Design and
Implementation, 2002.

[SW00] N. T. Spring and D. Wetherall. A protocol-
independent technique for eliminating redundant
network traffic. In Proceedings of ACM SIGCOMM,
pages 87--95, Aug. 2000.

[TKSK*03] N. Tolia, M. Kozuch, M. Satyanarayanan, B.
Karp, A. Perrig, and T. Bressoud. Opportunistic use
of content addressable storage for distributed file
systems. In Proceedings of the 2003 USENIX Annual
Technical Conference, pages 127–140, San Antonio,
TX, June 2003.

[YPL05] L. L. You, K. T. Pollack, and D. D. E. Long.
Deep Store: An archival storage system architecture.
In Proceedings of the IEEE International Conference
on Data Engineering (ICDE ’05), April 2005.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression, IEEE Trans. Inform.
Theory, vol. IT-23, pp. 337-343, May 1977.

