
COS 318: Operating Systems

Virtual Machine Monitors

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

Introduction

 Have been around since 1960’s on mainframes
  used for multitasking
  Good example – VM/370

 Have resurfaced on commodity platforms
  Server Consolidation
  Web Hosting centers
  High-Performance Compute Clusters
  Managed desktop / thin-client
  Software development / kernel hacking

2

Why do we care?
 Manageability

  Ease maintenance, administration, provisioning, etc.
 Performance

  Overhead of virtualization should be small

  Isolation
  Activity of one VM should not impact other active VMs
  Data of one VM is inaccessible by another

 Scalability
  Minimize cost per VM

3

Virtual Machine Monitor (VMM)

  Resides as a layer below the operating system

  Presents a hardware interface to an OS

  Multiplexes resources between several virtual machines
(VMs)

  Performance Isolates VMs from each other

4

VMM Types

5

Virtualization Styles

  Fully virtualizing VMM

  Para- virtualizing VMM

6

VMM Classification

7

Type I Type II

Fully-virtualized

Para-virtualized

VMware ESX VMware Workstation

User Mode Linux Xen

VMM Implementation

Should efficiently virtualize the hardware
  Provide illusion of multiple machines
  Retain control of the physical machine

Subsystems
  Processor Virtualization
  I/O virtualization
  Memory Virtualization

8

Processor Virtualization

Popek and Goldberg (1974)
  Sensitive instructions: only executed in kernel mode
  Privileged instructions: trap when run in user mode
  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions

  When guest OS runs a sensitive instruction, must trap to
VMM so it maintains control

9

x86 Processor Virtualization

  x86 architecture is not fully virtualizable
  Certain privileged instructions behave differently when

run in unprivileged mode
  Certain unprivileged instructions can access privileged

state

 Techniques to address inability to virtualize x86
  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
  Perform Binary Translation (Full Virtualization)

10

I/O Virtualization

  Issue: lots of I/O devices
 Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
  Insight: Device driver already written for popular

Operating Systems
 Solution: Present virtual I/O devices to guest VMs

and channel I/O requests to a trusted host VM
running popular OS

11

I/O Virtualization

12

VMM + Device Drivers VMM

Memory Virtualization

  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

  The shadow page table controls which pages of machine
memory are assigned to a given VM

  When guest OS updates its page table, VMM updates
the shadow

13

VMware ESX Server

  Type I VMM - Runs on bare hardware

  Full-virtualized – Legacy OS can run unmodified on top of
ESX server

  Fully controls hardware resources and provides good
performance

14

ESX Server – CPU Virtualization

 Most user code executes in Direct Execution
mode; near native performance

 Uses runtime Binary Translation for x86
virtualization
  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

15

ESX Server – Memory Virtualization
  Maintains shadow page tables with virtual to machine

address mappings.
  Shadow page tables are used by the physical processor
  ESX maintains the pmap data structure for each VM with

“physical” to machine address mappings
  ESX can easily remap a machine page

16

ESX Server – Memory Mgmt
  Page reclamation – Ballooning technique

  Reclaims memory from other VMs when memory is
overcommitted

  Page sharing – Content based sharing
  Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

17

ESX Server- Ballooning

18

ESX Server – Page Sharing

19

Real World Page Sharing

20

ESX Server – I/O Virtualization

  Has highly optimized storage subsystem for networking
and storage devices
  Directly integrated into the VMM
  Uses device drivers from the Linux kernel to talk directly to the

device
  Low performance devices are channeled to special “host”

VM, which runs a full Linux OS

21

I/O Virtualization

22

VMM + Device Drivers VMM

VMware Workstation

  Type II VMM - Runs on host operating system
  Full-virtualized – Legacy OS can run unmodified on

top of VMware Workstation
  Appears like a process to the Host OS

23

Workstation - Virtualization

  CPU Virtualization and Memory Virtualization
  Uses Similar Techniques as the VMware ESX server

  I/O Virtualization
  Workstation relies on the Host OS for satisfying I/O

requests
  I/O incurs huge overhead as it has to switch to the Host

OS on every IN/OUT instruction.

24

Workstation – I/O Virtualization

  VMM must be able to intercept all I/O operations
issued by the Guest OS

  These are trapped by the VMM and emulated either in
VMM or VMApp.

  Any access that interact with physical hardware have
to be handled by VMApp

  I/O intensive workload performs poorly due to extra
host switches between the Host and the VMM worlds

25

Workstation – Virtualize NIC

26

Xen

  Type I VMM
  Para-virtualized
  Open-source
  Designed to run about 100 virtual machines on a single

machine

27

Xen – CPU Virtualization

  Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

  Processor Rings
  Guest applications run in Ring 3
  Guest OS runs in Ring 1
  Xen runs in Ring 0

28

Xen – Memory Virtualization(1)

  Initial memory allocation is specified and memory is
statically partitioned

  A maximum allowable reservation is also specified.
  Balloon driver technique similar to ESX server used to

reclaim pages

29

Xen – Memory Virtualization(2)

  Guest OS is responsible for allocating and managing
hardware page table

  Xen involvement is limited to ensure safety and isolation
  Xen exists in the top 64 MB section at the top of every

address space to avoid TLB flushes when entering and
leaving the VMM

30

Xen – I/O Virtualization

  Xen exposes a set of clean and simple device
abstractions

  I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

  Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

31

VMMs the only way to Virtualize?

  Alternative: Container-based OS (COS)
  Eg., Solaris 10, Linux-Vserver, OpenVZ

32

Features VMM COS
Multiple kernels ✔
Administrative power (root) ✔ ✔
Manageability ✔ ✔
Scalability ✔ ✔✔
Isolation ✔✔ ✔
Efficiency ✔ ✔✔

PlanetLab (circa 2005) Usage

  Typical Node (2.4GHz, 1GB, 100GB disk)
  ~250-300 configured VM file systems on disk
  40-90 resident VMs with ≥ 1 process
  5-20 active VMs using CPU

33

80

60

40

0

20

100
Number of Resident VMs

25
20
15
10
5
0

Number of Active VMs
30

Container vs. Hypervisor Virtualization:
What is the Trade-Off?

34

• Stephen Soltesz, Herbert Pötzl, Marc Fiuczynski, Andy Bavier, Larry Peterson.
 Container-based operating system virtualization: A scalable, high-performance
alternative to hypervisors. EuroSys 2007
• Herbert Pötzl and Marc Fiuczynski.
 Linux-VServer: Resource-Efficient OS-level Virtualization, Ottawa Linux Sym. 2007

Container Design

35

GUEST 1 GUEST 2 GUEST n

Feature Comparison

36

Hypervisor Container

Multiple Kernels X

Load Arbitrary Modules X

Local Administration (root) All

Live Migration OpenVZ

Cross Version Migration X Zap

Linux-VServer Overview

37

Security Isolation
• Access to Logical Objects

• Context ID Filter
• User IDs
• SHM & IPC address
• File system Barriers

Resource Control
• Map Container to

• HTB for Network
• CFQ for Disk

• Logical Limits
• Processes
• Open FD
• Memory Locks

Optimizations
• File-level Copy-on-write

Scheduler
• Single Level
• Token Bucket Filter
preserves O(1) scheduler

COS vs. VMM Summary
 COS=Linux-Vserver VMM=Xen
  Performance

  COS 1.25x – 2x more efficient than VMM
  Scalability

  COS scales ~10x better
  Isolation

  COS almost as good as VMM

38

Summary

  Classifying Virtual Machine Monitors
  Type I vs. type II
  Full vs. para-virtualization

  Processor virtualization
  Memory virtualization
  I/O virtualization
  Containers vs. VMM

39

40

Review Topics

  OS structure
  Process management
  CPU scheduling
  Virtual memory
  Disks and file systems
  General concepts

41

Operating System Structure

  Abstraction
  Protection and security
  Kernel structure

  Layered
  Monolithic
  Micro-kernel

  Virtualization
  Virtual machine monitor

42

Process Management

  Implementation
  State, creation, dispatching, context switch
  Threads and processes

  Synchronization
  Race conditions and inconsistencies
  Mutual exclusion and critical sections
  Semaphores: P() and V()

•  Producer & Consumer problems
•  Scheduling problems

  Semaphore implementations
•  Atomic operations: interrupt disable, test-and-set.

  Monitors and Condition Variables
  Deadlock detection and prevention

43

CPU Scheduling

  Allocation -- Non-preemptible resources
  Scheduling -- Preemptible resources

  FIFO
  Round-robin
  STCF
  Lottery

44

Virtual Memory

  Mechanisms
  Base and bounds
  Paging
  Segmentation
  Page and segmentation
  TLBs

  Page replacement
  LRU and clock
  Thrashing, working sets and WSClock

45

Disks and File Systems
  Disks

  Disk behavior
  Disk scheduling
  RAID
  Volume manager

  File access pattern and layout
  Directories and implementation
  File system performance

  Layout for performance
  Buffer cache

  File system reliability
  Crash recovery and logging

  NFS and NetApp file system
  Deduplication file system

46

Major Concepts

  Locality
  Spatial, temporal and working set

  Scheduling
  Optimal algorithms know future, but we use past instead

  Layering
  Synchronization, transactions, file systems, etc

  Caching
  Translation look aside buffer, VM, buffer cache, etc

47

Operating System as Illusionist

Physical reality
  Single CPU
  Interrupts

  Limited memory
  No protection

  Raw storage device

Abstraction
  Infinite number of CPUs
  Cooperating sequential

threads
  Unlimited virtual memory
  Each address has its own

machine
  Organized and reliable

storage system

Future courses
 Networking: COS 461
 Security: COS 429
 Advanced OS: COS 518
 Parallel Arch & Prog. COS 598A

