
COS 318: Operating Systems

Overview

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Logistics

  Precepts:
  Tue: 7:30pm-8:30pm, 105 CS building

  Design review:
  Mon 9/27: 5-9pm, 010 Friends center

  Project 1 due:
  10/4 at 11:59pm

  Reminder:
  Subscribe to the cos318 mailing list!

  Team sign-up sheet

3

Today

  Overview of OS structure
  Overview of OS components

4

Hardware of A Typical Computer

CPU

Chipset Memory
I/O bus

CPU . . .

Network

ROM

Computing machinery
Analytical Engine (~1850) Charles Babbage

ENIAC (~1946) Eckert & Mauchly, UPenn Johnniac (~1953) von Neumann, IAS

6

A Typical Computer System

Memory CPU

CPU

. . .

OS
Apps
Data

Network

Application

Operating System

ROM

BIOS

7

Hardware Interrupts

  Raised by external events
  Interrupt handler is in the

kernel
  Switch to another process
  Overlap I/O with CPU
  …

  Eventually resume the
interrupted process

0:
1:
…

i:
i+1:
…

N:

Interrupt
handler

8

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

9

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

10

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Written by elves
•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved”
when program is loaded

11

Pipeline of Creating An Executable File

  gcc can compile, assemble, and link together
  Compiler (part of gcc) compiles a program into assembly
  Assembler compiles assembly code into relocatable object file
  Linker links object files into an executable
  For more information:

  Read man page of elf, ld, and nm
  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

12

Execution (Run An Application)

  On Unix, “loader” does the job
  Read an executable file
  Layout the code, data, heap and stack
  Dynamically link to shared libraries
  Prepare for the OS kernel to run the application
  E.g., on Linux, “man ld-linux”

a.out loader *.o, *.a ld Application

Shared
library

13

What’s An Application?

  Four segments
  Code/Text – instructions
  Data – initialized global

variables
  Stack
  Heap

  Why?
  Separate code and data
  Stack and heap go

towards each other

Stack

Heap

Initialized data

Code

2n -1

0

14

Responsibilities

  Stack
  Layout by compiler
  Allocate/deallocate by process creation (fork) and termination
  Names are relative off of stack pointer and entirely local

  Heap
  Linker and loader say the starting address
  Allocate/deallocate by library calls such as malloc() and free()
  Application program use the library calls to manage

  Global data/code
  Compiler allocate statically
  Compiler emit names and symbolic references
  Linker translate references and relocate addresses
  Loader finally lay them out in memory

15

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

16

OS Service Examples

  Examples that are not provided at user level
  System calls: file open, close, read and write
  Control the CPU so that users won’t get stuck by running

•  while (1) ;

  Protection:
•  Keep user programs from crashing OS
•  Keep user programs from crashing each other

  System calls are typically traps or exceptions
  System calls are implemented in the kernel
  When finishing the service, a system returns to the user code

17

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

18

Applications

Software “Onion” Layers

Libraries

OS Services
Device

Driver

Kernel

User and Kernel
boundary

HW

19

Processor Management

  Goals
  Overlap between I/O and

computation
  Time sharing
  Multiple CPU allocations

  Issues
  Do not waste CPU resources
  Synchronization and mutual

exclusion
  Fairness and deadlock free

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

20

Memory Management

  Goals
  Support programs to run
  Allocation and management
  Transfers from and to

secondary storage
  Issues

  Efficiency & convenience
  Fairness
  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

21

I/O Device Management

  Goals
  Interactions between

devices and applications
  Ability to plug in new

devices
  Issues

  Efficiency
  Fairness
  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

22

File System
  Goals:

  Manage disk blocks
  Map between files and disk

blocks
  A typical file system

  Open a file with
authentication

  Read/write data in files
  Close a file

  Issues
  Reliability
  Safety
  Efficiency
  Manageability

User 1 User n . . .

File system services

File File . . .

23

Window Systems

  Goals
  Interacting with a user
  Interfaces to examine and

manage apps and the system
  Issues

  Direct inputs from keyboard and
mouse

  Display output from applications
and systems

  Labor of division
•  All in the kernel (Windows)
•  All at user level
•  Split between user and kernel (Unix)

24

Bootstrap

  Power up a computer
  Processor reset

  Set to known state
  Jump to ROM code (BIOS is

in ROM)
  Load in the boot loader from

stable storage
  Jump to the boot loader
  Load the rest of the operating

system
  Initialize and run
  Question: Can BIOS be on disk?

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

. . .

Boot
loader

25

Ways to Develop An Operating System

  A hardware simulator
  A virtual machine
  A good kernel debugger

  When OS crashes, always goes to the debugger
  Debugging over the network

  Hire some smart programmers

1972 1998

Summary

  Interrupts
  User level vs. kernel level
  OS services

  Processor
  Memory
  I/O devices
  File system
  Window system

  Booting the OS

26

