gli"-’

® @r\a

COS 318: Operating Systems
Overview

Andy Bavier

Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

gli"-’

Logistics

Precepts:

e Tue: 7:30pm-8:30pm, 105 CS building
Design review:

e Mon 9/27: 5-9pm, 010 Friends center
Project 1 due:

e 10/4 at 11:59pm

Reminder:

e Subscribe to the cos318 mailing list!
Team sign-up sheet

® @r\a

5“"-’

Today

Overview of OS structure
Overview of OS components

Hardware of A Typical Computer

e
CPU CPU
Memory 4@@
[/O bus
ROM
= Network
4

Computing machinery

Analytical Engine (~1850) Charles Babbage

ENIAC (~1946) Eckert & Mauchly, UPenn

- 3 . o1 /] " - -
1 W & 8
')

e .
d "

. ; uu-l‘u:a‘.. -, b

A Typical Computer System

CPU

CPU

5“"-’
s

Memory
Application
Operating System
BIOS
ROM
\ \
os | | b=)

Data)

gli"-’

Hardware Interrupts

Raised by external events

nterrupt handler is in the
Kernel

e Switch to another process
e Overlap I/0O with CPU

Eventually resume the
interrupted process

Jire

Interrupt
handler

Typical Unix OS Structure

Elﬁ

Application

Libraries User level

Kernel level

Portable OS Layer

g

Typical Unix OS Structure
2080

Etﬁ

User function calls
written by programmers and
Application ‘/Kcompiled by programmers.

Libraries

Portable OS Layer

g

Typical Unix OS Structure

Etﬁ

00
/- Written by elves \

* Objects pre-compiled
* Defined in headers

Apnplication * Input to linker
PpHLAto * Invoked like functions

» May be “resolved”
Libraries when program is Ioaded/

Portable OS Layer

10

e

gli"-’

Pipeline of Creating An Executable File

foo.c — gcc —foo.s — as * f00.0
bar.c —* gcc —* bars — as » bar.o Id * a.out
libc.a

gcc can compile, assemble, and link together

Compiler (part of gcc) compiles a program into assembly
Assembler compiles assembly code into relocatable object file
Linker links object files into an executable

For more information:

e Read man page of elf, Id, and nm
e Read the document of ELF

® @r\a

Execution (Run An Application)

On Unix, “loader” does the job
e Read an executable file

e Layout the code, data, heap and stack
e Dynamically link to shared libraries

e Prepare for the OS kernel to run the application

e E.g., on Linux, “man Id-linux”

*.0, *.a

Fe
Jire

fo

» a.out

» loader

Application

Shared
library

12

What's An Application?

¢ Four segments
e Code/Text — instructions

e Data — initialized global
variables

e Stack
e Heap
¢ Why?
e Separate code and data

e Stack and heap go
towards each other

Heap

Initialized data

Code

13

5“"-’

Responsibilities

Stack
e Layout by compiler
e Allocate/deallocate by process creation (fork) and termination
e Names are relative off of stack pointer and entirely local
Heap
e Linker and loader say the starting address
e Allocate/deallocate by library calls such as malloc() and free()
e Application program use the library calls to manage

Global data/code
e Compiler allocate statically
e Compiler emit names and symbolic references
e Linker translate references and relocate addresses
e Loader finally lay them out in memory

14

s

Typical Unix OS Structure

Application

Libraries

Portable OS Layer

“Guts” of system calls

15

gli"-’

OS Service Examples

Examples that are not provided at user level
e System calls: file open, close, read and write

e Control the CPU so that users won't get stuck by running
« while (1);
e Protection:

« Keep user programs from crashing OS
« Keep user programs from crashing each other

System calls are typically traps or exceptions

e System calls are implemented in the kernel
e \When finishing the service, a system returns to the user code

16

® @r\a

5("3

Typical Unix OS Structure

s

Application

Libraries

-

Portable OS Layer

» Bootstrap
« System initialization

* Interrupt and exception

* 1/O device driver
 Memory management
» Mode switching

* Processor management

~

/

17

Software “Onion” Layers
200

User and Kernel
boundary

Applications

OS Services
Device

Driver

18

5“"-’

Processor Management

Goals

e Overlap between /O and
computation

e Time sharing

e Multiple CPU allocations
Issues

e Do not waste CPU resources

e Synchronization and mutual
exclusion

e Fairness and deadlock free

s

CPU | I/O | CPU
CPU | /O
CPU
CPU
I/O
CPU

CPU

CPU

19

Memory Management

Goals
e Support programs to run
e Allocation and management

e Transfers from and to
secondary storage

Issues

e Efficiency & convenience
e Fairness

e Protection

gli"-’
a&%

n f 1

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

20

gli"-’

/O Device Management

Goals

e Interactions between
devices and applications

e Ability to plug in new
devices

Issues

e Efficiency

e Fairness

e Protection and sharing

® @r\a

User 1 User n
Library support
Driver Driver
I/0 I/0
device device

21

5“"-’

File System

Goals:
e Manage disk blocks

e Map between files and disk
blocks

A typical file system

e Open a file with
authentication

e Read/write data in files
e Close afile

Issues

e Reliability

o Safety

e Efficiency

e Manageability

s

User 1

User n

File system services

File

File

_—
\

tl_‘

==

SRl

W%

22

5{1@

Window Systems

¢+ Goals
e Interacting with a user

e Interfaces to examine and
manage apps and the system

¢ Issues

e Direct inputs from keyboard and
mouse

e Display output from applications
and systems

e Labor of division
 Allin the kernel (Windows)

 All at user level
« Split between user and kernel (Unix)

s

23

5“"-’

Bootstrap

s

Power up a computer
Processor reset
e Set to known state

e Jump to ROM code (BIOS is
in ROM)

Load in the boot loader from
stable storage

Jump to the boot loader

Load the rest of the operating
system

Initialize and run
Question: Can BIOS be on disk?

Boot
loader

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

24

Ways to Develop An Operating System
200
¢ A hardware simulator

¢ A virtual machine

¢ A good kernel debugger
e \When OS crashes, always goes to the debugger
e Debugging over the network

¢ Hire some smar}’&r rammers

gli"-’

Summary

® @r\a

Interrupts
User level vs. kernel level

OS services

e Processor

e Memory

e |/O devices

e File system

e \Window system

Booting the OS

26

