COS 318: Operating Systems

OS Structures and System Calls

Andy Bavier

Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

Outline

Protection mechanisms
OS structures
System and library calls

Protection Issues

CPU

e Kernel has the ability to take CPU away from users to
prevent a user from using the CPU forever

e Users should not have such an ability
Memory
e Prevent a user from accessing others’ data

e Prevent users from modifying kernel code and data
structures

/O

e Prevent users from performing “illegal” 1/Os

Question

e \What's the difference between protection and security?

Architecture Support: Privileged Mode

An interrupt or exception (INT)

User mode A Kernel (privileged) mode
* Reqgular instructions * Reqgular instructions
» Access user memory * Privileged instructions
« Access user memory
» Access kernel memory
- “ AN /

A special instruction (IRET)

Privileged Instruction Examples

Memory address mapping

Flush or invalidate data cache

nvalidate TLB entries

_oad and read system reqgisters

Change processor modes from kernel to user
Change the voltage and frequency of processor
Halt a processor

Reset a processor

Perform 1/O operations

x86 Protection Rings

Privileged instructions
Can be executed only

When current privileged
Level (CPR)1s 0

Operating syste
kernel

»
L

Level 0

Operating syste

services Level 1

Level 2

Applications Covel 3

Outline

¢ Protection mechanisms
¢ OS structures
¢ System and library calls

Monolithic

All kernel routines are together, any

can call any
A system call interface
_ User User

Examples:

e Linux, BSD Unix, Windows progtam program
Pros

e Shared kernel space 6}6‘ 06\\

P S s\°

e Good performance

Cons
e No information hiding
e Chaotic
e Hard to understand
e How many bugs in 5M lines of code?

Kernel

(many things)

G

e,
ﬁmﬁ

Layered Structure

¢ Level N constructed on N-1
¢ Hiding information at each layer

¢+ Examples:
e THE (6 layers) Lavel I
e MULTICS (8 rings)
¢ Pros
e Layered abstraction Level 2
e Separation of concerns
e Elegance Level 1
¢ Cons

e Protection boundary crossings
e Performance

e Inflexible

Microkernel

Put less in kernel mode; only small
part of OS

Services are implemented as
regular process

u-kernel gets svcs on for users by
messaging with service processes | Program

User

OS

Services

Examples:
e Mach, Taos, L4 Sy
Pros? “90@//
e Modularity: easier management
e Fault isolation and reliability
Cons?

e |nefficient (boundary crossings)
e |nsufficient protection

e Inconvenient to share dajca
between kernel and services

10

Virtual Machine

¢ Separate multiprogramming
from abstraction; VMM
provides former Apps Apps

¢ Virtual machine monitor

e Virtualize hardware, but
expose as multiple VM, VM,
instances of “raw” HW

e Run several OSes, one on Virtual Machine Monitor

each instance

e Examples
Raw Hardware

oS, . 0S,

 |IBM VM/370
 Java VM
« VMWare, Xen

¢ What would you use a virtual
machine for?

Two Popular Ways to Implement VMM

guﬂ

Linux

Hardware Hardware

VMM runs on hardware VMM as an application

(A special lecture later in the semester)

o B

12

Outline

¢ Protection mechanisms
¢ OS structures
¢ System and library calls

13

System Calls

Operating system API

e Interface between an application and the operating
system kernel

Categories

e Process management
e Memory management
e File management

e Device management
e Communication

14

How many system calls?

6th Edition Unix:
POSIX:
FreeBSD:

Linux:

Windows:

~45

~130

~130

~250

4007 10007 1M?

15

System Call Mechanism

Assumptions

User code can be arbitrary

User code cannot modify kernel
memory

Design Issues

User makes a system call with
parameters

The call mechanism switches
code to kernel mode

Execute system call
Return with results

(Like a procedure call, just
crosses kernel boundary)

User User
program program
&
%5 N
% eﬂe’o
I
Kernel 1in

protected memory

16

OS Kernel: Trap Handler

|
Interrupt
. Syscall table service
HW Device y \ routines
Interrupt |
System |
System Call » Service]
dispatcher System
HW services
exceptions |
. System :
SW exceptions sgrvice Exception
' . dispatcher Exception
Vlrtual. address dispatcher]
exceptions | handlers

VM manager’s

/ pager

HW implementation of the boundary

Elv

From http://minnie.tuhs.org/UnixTree/V6

o0oe
Vo6/usr/sys/ken/sysent.c

3, &smount, /* 21 = mount */
Find atmost[5 +] related files. Search | é' &Sumo?gt' j: gg % umc'ur_l; ::’:
I including files from this version of Unix. l'.l: z;ztﬁid: /+ 24 = ;:zﬁid Ny
0, &stirne, /* 25 = stime */
3, &ptrace, /* 26 = ptrace */
ﬁ* 0, &nosys, f* 27 = x *f
ny 1, sfstat, /* 28 = fstat */
0, &nosys, f* 29 = x */
pn 1, &nullsys, /* 30 = smdate; inoperative */
))) 1, &stty, /* 31 = stty */
* This table is the switch used to transfer 1, sgtty, J* 32 = gtty */
* to the appropriate routine for processing a system call. 0, snosys, Jt 33 = x +/
* Each row contains the nuber of arguents expected 0F sridee; J* 34 = pice */
* and a pointer to the routine. 0, &sslep, /* 35 = sleep */
_*f 0, &syne, /* 36 = synec */
dug sysent[] 1, &kill, /* 37 = kill */
{ 2 w2 0, sgetswit, /* 38 = switch */
0, snullsys, /* 0 = indir */ 0, &nosys, J* 30 = y +/
o . £y Li=texitir/ 0, &nosys, f* 40 = x */
Oy ssurks £¥ @r=rforkin/ 0, sdup /* 41 = dup */
2, &read, /* 3 = read */ D: &pip;, /* 42 = pipe */
Z, &write, /* 4 = write */ 1, stimes, /* 43 = times */
2, &open, /* 5= open */ 4, sprofil, /* 44 = prof */
0, &close, /* 6 = close */ g. biea /¥ 45 g4y ¥/
2 ¢ ’ vs, iu
0, &swait, /* 7 = wait */ 0, asataid, /% 46 = setgid */
2, &creat, /* 8 = creat */ 0, sgetgid, /* 47 = getgid */
2, &link, £ 9 =rlink 2/ 2, &ssig, /* 48 = sig */
1, sunlink, /* 10 = unlink */
2, &exec, /* 11 = exec */
1, &chdir, /* 12 = chdir */
0, >ine, /* 13 = time */
3, &nknod, /* 14 = mknod */
2, &chmod, /* 15 = chmod */
2, &chown, /* 16 = chown */
1, &sbreak, /* 17 = break */
2, &stat, /* 18 = stat */ ,18
2, &seek, /* 19 = seek */
0, &getpid, /* 20 = getpid */

-

Passing Parameters

Pass by registers

e # of registers

e # of usable registers

e # of parameters in system call
e Spill/fill code in compiler
Pass by a memory vector (list)
e Single register for starting address
e Vector in user's memory
Pass by stack

e Similar to the memory vector
e Procedure call convention

19

Library Stubs for System Calls

Example:
int read(int fd, char * buf, int size)

{

move fd, buf, size to R,, R,, R;

move REAWL. . 20
int $0x80 ux.

L NT: 2E

move result from R .

|

User
program

2
55
e
2,

Kernel 1n
protected memory

20

System Call Entry Point

EntryPoint:
save context User
switch to kernel stack gzslr(memory
check R
’ Registers

call the real code pointed by R,
place result in R

|
result

switch to user stack Registers
restore context el
iret (change to user mode and return) stack Kernel
memory
(Assume passing parameters in registers)

Design Issues

®
System calls

e There is one result register; what about more results?
e How do we pass errors back to the caller?
System calls vs. library calls
e \What should go in system calls?
e \What should go in library calls?

22

Division of Labors

Memory management example
Kernel
e Allocates “pages” with hardware protection
e Allocates a big chunk (many pages) to library
e Does not care about small allocs

Library
e Provides malloc/free for allocation and deallocation
e Application use these calls to manage memory at fine
granularity
e \When reaching the end, library asks the kernel for
more

23

Feedback To The Program

Applications view system
calls and library calls as
procedure calls

What about OS to apps?

e \Various exceptional
conditions

e (General information, like
screen resize

What mechanism would OS
use for this?

Application

Operating
System

24

Interrupts and Exceptions

Interrupt Sources

e Hardware (by external devices)

e Software: INT n

Exceptions

e Program error: faults, traps, and aborts
e Software generated: INT 3

e Machine-check exceptions

See Intel document volume 3 for details

25

Interrupts and Exceptions (1)

Vector # Mnemonic Description Type
0 #DE Divide error (by zero) Fault
1 #DB Debug Fault/trap
2 NMI interrupt Interrupt
3 #BP Breakpoint Trap
4 #OF Overflow Trap
5 #BR BOUND range exceeded Trap
6 #UD Invalid opcode Fault
7 #NM Device not available Fault
8 #DF Double fault Abort
9 Coprocessor segment overrun Fault
10 #TS Invalid TSS

Interrupts and Exceptions (2)

Vector # Mnemonic Description Type
1 #NP Segment not present Fault
12 #SS Stack-segment fault Fault
13 #GP General protection Fault
14 #PF Page fault Fault
15 Reserved Fault
16 #MF Floating-point error (math fault) Fault
17 #AC Alignment check Fault
18 #MC Machine check Abort
19-31 Reserved
32-255 User defined Interrupt

27

Example: Divide error

What happens when your program divides by zero?

e Processor exception
» Defined by x86 architecture as INT O

e Jump to kernel, execute handler O in interrupt vector
e Handler 0 sends SIGFPE to process

e Kernel returns control to process

e Process has outstanding signal

e Did process register SIGFPE handler?

* Yes:

« Execute SIGFPE handler

 When handler returns, resume program and redo divide
* No: kills process

28

Summary

Protection mechanism

e Architecture support: two modes

e Software traps (exceptions)

OS structures

e Monolithic, layered, microkernel and virtual machine
System calls

e Implementation

e Design issues

e Tradeoffs with library calls

29

