
COS 318: Operating Systems

OS Structures and System Calls

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Outline

  Protection mechanisms
  OS structures
  System and library calls

3

Protection Issues

  CPU
  Kernel has the ability to take CPU away from users to

prevent a user from using the CPU forever
  Users should not have such an ability

  Memory
  Prevent a user from accessing others’ data
  Prevent users from modifying kernel code and data

structures
  I/O

  Prevent users from performing “illegal” I/Os
  Question

  What’s the difference between protection and security?

4

Architecture Support: Privileged Mode

An interrupt or exception (INT)

A special instruction (IRET)

Kernel (privileged) mode
•  Regular instructions
•  Privileged instructions
•  Access user memory
•  Access kernel memory

User mode
•  Regular instructions
•  Access user memory

5

Privileged Instruction Examples

  Memory address mapping
  Flush or invalidate data cache
  Invalidate TLB entries
  Load and read system registers
  Change processor modes from kernel to user
  Change the voltage and frequency of processor
  Halt a processor
  Reset a processor
  Perform I/O operations

6

x86 Protection Rings

Level 0

Level 1

Level 2
Level 3

Operating system
kernel

Operating system
services

Applications

Privileged instructions
Can be executed only
When current privileged
Level (CPR) is 0

7

Outline

  Protection mechanisms
  OS structures
  System and library calls

8

Monolithic

  All kernel routines are together, any
can call any

  A system call interface
  Examples:

  Linux, BSD Unix, Windows
  Pros

  Shared kernel space
  Good performance

  Cons
  No information hiding
  Chaotic
  Hard to understand
  How many bugs in 5M lines of code?

Kernel
(many things)

User
program

User
program

9

Layered Structure
  Level N constructed on N-1
  Hiding information at each layer
  Examples:

  THE (6 layers)
  MULTICS (8 rings)

  Pros
  Layered abstraction
  Separation of concerns
  Elegance

  Cons
  Protection boundary crossings
  Performance
  Inflexible

Hardware

Level 1

Level 2

Level N
. . .

10

Microkernel
  Put less in kernel mode; only small

part of OS
  Services are implemented as

regular process
  µ-kernel gets svcs on for users by

messaging with service processes
  Examples:

  Mach, Taos, L4
  Pros?

  Modularity: easier management
  Fault isolation and reliability

  Cons?
  Inefficient (boundary crossings)
  Insufficient protection
  Inconvenient to share data

between kernel and services

entry

User
program

OS
Services

µ-kernel

11

Virtual Machine Monitor

VM1

OS1

Virtual Machine

  Separate multiprogramming
from abstraction; VMM
provides former

  Virtual machine monitor
  Virtualize hardware, but

expose as multiple
instances of “raw” HW

  Run several OSes, one on
each instance

  Examples
•  IBM VM/370
•  Java VM
•  VMWare, Xen

  What would you use a virtual
machine for?

Apps

VMk

OSk

Apps

. . .

Raw Hardware

12

Two Popular Ways to Implement VMM

Hardware

Linux

Linux Apps

VMM

Win Vista

Win Apps

Hardware

Linux

Linux Apps VMM

Win Vista

Win Apps

VMM as an application VMM runs on hardware

(A special lecture later in the semester)

13

Outline

  Protection mechanisms
  OS structures
  System and library calls

14

System Calls

  Operating system API
  Interface between an application and the operating

system kernel
  Categories

  Process management
  Memory management
  File management
  Device management
  Communication

15

How many system calls?

  6th Edition Unix: ~45
  POSIX: ~130
  FreeBSD: ~130
  Linux: ~250
  Windows: 400? 1000? 1M?

16

System Call Mechanism

  Assumptions
  User code can be arbitrary
  User code cannot modify kernel

memory
  Design Issues

  User makes a system call with
parameters

  The call mechanism switches
code to kernel mode

  Execute system call
  Return with results
  (Like a procedure call, just

crosses kernel boundary)

Kernel in
protected memory

User
program

User
program

17

OS Kernel: Trap Handler

HW Device
Interrupt

HW
exceptions

SW exceptions

System Call

Virtual address
exceptions

HW implementation of the boundary

System
service
dispatcher

System
services

Interrupt
service
routines

Exception
dispatcher Exception

handlers

VM manager’s
pager

Syscall table

System
Service
dispatcher

18

From http://minnie.tuhs.org/UnixTree/V6

19

Passing Parameters

  Pass by registers
  # of registers
  # of usable registers
  # of parameters in system call
  Spill/fill code in compiler

  Pass by a memory vector (list)
  Single register for starting address
  Vector in user’s memory

  Pass by stack
  Similar to the memory vector
  Procedure call convention

20

Library Stubs for System Calls

  Example:
int read(int fd, char * buf, int size)
{

 move fd, buf, size to R1, R2, R3
 move READ to R0
 int $0x80
 move result from Rresult

}

Linux: 80
NT: 2E

Kernel in
protected memory

User
program

21

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

EntryPoint:
 save context
 switch to kernel stack
 check R0

 call the real code pointed by R0
place result in Rresult
 switch to user stack
 restore context
 iret (change to user mode and return)

(Assume passing parameters in registers)

22

Design Issues

  System calls
  There is one result register; what about more results?
  How do we pass errors back to the caller?

  System calls vs. library calls
  What should go in system calls?
  What should go in library calls?

23

Division of Labors

Memory management example
  Kernel

  Allocates “pages” with hardware protection
  Allocates a big chunk (many pages) to library
  Does not care about small allocs

  Library
  Provides malloc/free for allocation and deallocation
  Application use these calls to manage memory at fine

granularity
  When reaching the end, library asks the kernel for

more

24

Feedback To The Program

  Applications view system
calls and library calls as
procedure calls

  What about OS to apps?
  Various exceptional

conditions
  General information, like

screen resize
  What mechanism would OS

use for this?

Application

Operating
System

25

Interrupts and Exceptions

  Interrupt Sources
  Hardware (by external devices)
  Software: INT n

  Exceptions
  Program error: faults, traps, and aborts
  Software generated: INT 3
  Machine-check exceptions

  See Intel document volume 3 for details

26

Interrupts and Exceptions (1)

Vector # Mnemonic Description Type

0 #DE Divide error (by zero) Fault

1 #DB Debug Fault/trap

2 NMI interrupt Interrupt

3 #BP Breakpoint Trap

4 #OF Overflow Trap

5 #BR BOUND range exceeded Trap

6 #UD Invalid opcode Fault

7 #NM Device not available Fault

8 #DF Double fault Abort

9 Coprocessor segment overrun Fault

10 #TS Invalid TSS

27

Interrupts and Exceptions (2)

Vector # Mnemonic Description Type
11 #NP Segment not present Fault

12 #SS Stack-segment fault Fault

13 #GP General protection Fault

14 #PF Page fault Fault

15 Reserved Fault

16 #MF Floating-point error (math fault) Fault

17 #AC Alignment check Fault

18 #MC Machine check Abort

19-31 Reserved

32-255 User defined Interrupt

Example: Divide error

  What happens when your program divides by zero?
  Processor exception

•  Defined by x86 architecture as INT 0

  Jump to kernel, execute handler 0 in interrupt vector
  Handler 0 sends SIGFPE to process
  Kernel returns control to process
  Process has outstanding signal
  Did process register SIGFPE handler?

•  Yes:
•  Execute SIGFPE handler
•  When handler returns, resume program and redo divide

•  No: kills process

28

29

Summary

  Protection mechanism
  Architecture support: two modes
  Software traps (exceptions)

  OS structures
  Monolithic, layered, microkernel and virtual machine

  System calls
  Implementation
  Design issues
  Tradeoffs with library calls

