
COS 318: Operating Systems

Snapshot and NFS

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Topics

  Revisit Transactions and Logging
  NetApp File System
  NFS

3

Transactions

  Bundle many operations into a transaction
  One of the first transaction systems is Sabre American Airline

reservation system, made by IBM
  Primitives

  BeginTransaction
•  Mark the beginning of the transaction

  Commit (End transaction)
•  When transaction is done

  Rollback (Abort transaction)
•  Undo all the actions since “Begin transaction.”

  Rules
  Transactions can run concurrently
  Rollback can execute anytime
  Sophisticated transaction systems allow nested transactions

4

Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Assumptions
  Writing to disk is correct (recall the error detection and correction)
  Disk is in a good state before we start

5

An Example: Atomic Money Transfer
  Move $100 from account S to C (1 thread):

BeginTransaction
S = S - $100;
C = C + $100;

Commit
  Steps:

1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

  Possible crashes
  After 1
  After 2
  After 3 before 4 and 5

  Questions
  Can we swap 3 with 4?
  Can we swap 4 and 5?

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

Memory

6

Revisit The Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Questions
  What if there is a crash during the recovery?

7

Use Transactions in File Systems

  Make a file operation a transaction
  Create a file
  Move a file
  Write a chunk of data
  …
  Would this eliminate any need to run fsck after a crash?

  Make arbitrary number of file operations a transaction
  Just keep logging but make sure that things are idempotent:

making a very long transaction
  Recovery by replaying the log and correct the file system
  This is called journaling file system
  Almost all new file systems are journaling (Windows NTFS,

Veritas file system, file systems for Linux)

8

Issue with Logging: Performance

 For every disk write, we now have two disk writes (on
different parts of the disk)?
  It is not so bad because logging is sequential and write-behind

can be done asynchronously.
 Performance tricks

  Changes made in memory and then logged to disk
  Logging are sequentially done a different disk.
  Merge multiple writes to the log with one write
  Use NVRAM (Non-Volatile RAM) to keep the log

9

Log Management

  How big is the log? Same size as the file system?
  Observation

  Log what’s needed for crash recovery
  Management method

  Checkpoint operation: flush the buffer cache to the log and
then write behind

  After a checkpoint, we can truncate log and start again
  Log needs to be big enough to hold changes in memory

  Some file systems log only metadata (file descriptors
and directories)
  Would this be a problem?

10

What to Log?

 Physical blocks (directory blocks and inode blocks)
  Easy to implement but takes more space
  Which block image?

•  Before operation: Easy to go backward during recovery
•  After operation: Easy to go forward during recovery.
•  Both: Can go either way.

  Logical operations
  Example: Add name “foo” to directory #41
  More compact
  But more work at recovery time

11

Log-structured File System (LFS)

  Structure the entire file system as a log with segments
  A segment has i-nodes, indirect blocks, and data blocks
  All writes are sequential (no seeks)
  There will be holes when deleting files
  Questions

  What about read performance?
  How would you clean (garbage collection)?

Used Unused

Log structured

12

Case: NetApp’s NFS File Server

  WAFL: Write Anywhere File Layout
  The basic NetApp’s file system

  Design goals
  Fast services (fast means more operations/sec and higher

bandwidth)
  Support large file systems and allow growing smoothly
  High-performance software RAID
  Restart quickly after a crash

  Special features
  Introduce snapshots
  Use NVRAM to reduce latency and maintain consistency

13

Snapshots

  A snapshot is a read-only copy of the file system
  Introduced in 1993
  It has become a standard feature of today’s file server

  Use snapshots
  System administrator configures the number and frequency of snapshots
  An initial system can keep up to 20 snapshots
  Use snapshots to recover individual files

  An example
arizona% cd .snapshot
arizona% ls
hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1
hourly.1 hourly.3 hourly.5 nightly.1 weekly.0
arizona%

  How much space does a snapshot consume?
  10-20% space per week

14

i-node, Indirect and Data Blocks

  WAFL uses 4KB blocks
  i-nodes (evolved from UNIX’s)
  Data blocks

  File size < 64 bytes
  i-node stores data directly

  File size < 64K bytes
  i-node stores 16 pointers to data

  File size < 64M bytes
  i-node stores 16 pointers to

indirect blocks
  Each indirect pointer block stores

1K pointers to data
  File size > 64M bytes

  i-node stores pointers to doubly
indirect blocks

Data Data Data

Data Data

Data

Data Data Data

15

WAFL Layout

  A WAFL file system has
  A root i-node: root of everything
  An i-node file: contains all i-nodes
  A block map file: indicates free blocks
  An i-node map file: indicates free i-nodes
  Data files: real files that users can see

Metadata
in files

16

Why Keeping Metadata in Files

  Allow meta-data blocks to be written anywhere on disk
  This is the origin of “Write Anywhere File Layout”
  Any performance advantage?

  Easy to increase the size of the file system dynamically
  Add a disk can lead to adding i-nodes
  Integrate volume manager with WAFL

  Enable copy-on-write to create snapshots
  Copy-on-write new data and metadata on new disk locations
  Fixed metadata locations are cumbersome

17

Snapshot Implementation
  WAFL file system is a tree of

blocks
  Snapshot step 1

  Replicate the root i-node
  New root i-node is the active file

system
  Old root i-node is the snapshot

  Snapshot step 2…n
  Copy-on-write blocks to the root
  Active root i-node points to the new

blocks
  Writes to the new block
  Future writes into the new blocks will

not trigger copy-on-write
  An “add-on” snapshot mechanism

for a traditional file system?

C

1

Root Root

A F D B C

1 2

Modify

C’

Modify

1’

18

File System Consistency

  Create a snapshot
  Create a consistency point or snapshot every 10 seconds
  On a crash, revert the file system to this snapshot
  Not visible by users

  Many requests between consistency points
  Consistency point i
  Many writes
  Consistency point i+1 (advanced atomically)
  Many writes
  …

  Question
  Any relationships with transactions?

19

Non-Volatile RAM

  Non-Volatile RAM
  Flash memory (slower)
  Battery-backed DRAM (fast but battery lasts for only days)

  Use an NVRAM to buffer writes
  Buffer all write requests since the last consistency point
  A clean shutdown empties NVRAM, creates one more

snapshot, and turns off NVRAM
  A crash recovery needs to recover data from NVRAM to the

most recent snapshot and turn on the system
  Use two logs

  Buffer one while writing another
  Issues

  What is the main disadvantage of NVRAM?
  How large should the NVRAM be?

20

Write Allocation

  WAFL can write to any blocks on disk
  File metadata (i-node file, block map file and i-node map file)

is in the file system
  WAFL can write blocks in any order

  Rely on consistency points to enforce file consistency
  NVRAM to buffer writes to implement ordering

  WAFL can allocate disk space for many NFS operations
at once in a single write episode
  Reduce the number of disk I/Os
  Allocate space that is low latency

  Issue
  What about read performance?

21

Snapshot Data Structure

  WAFL uses 32-bit
entries in the block
map file
  32-bit for each 4KB

disk block
  32-bit entry = 0: the

block is free
  Bit 0 = 1:

active file system
references the block

  Bit 1 = 1:
the most recent snapshot

references the block

22

Snapshot Creation

  Problem
  Many NFS requests may arrive while creating a snapshot
  File cache may need replacements
  Undesirable to suspend the NFS request stream

  WAFL solution
  Before a creation, mark dirty cache data “in-snapshot"
  Defer all modifications to “in-snapshot” data
  Modify cache data not marked “in-snapshot”
  Do not flush cache data not marked “in-snapshot”

23

Algorithm

  Steps
  Allocate disk space for “in-snapshot” blocks

•  Copy “in-snapshot” cached i-nodes to disk buffer
•  Clear “in-snapshot” bit of all cached i-nodes

  Update the block-map file
•  For each entry, copy the bit for active FS to the new snapshot

  Flush
•  Write all “in-snapshot” disk buffers to their new disk locations
•  Restart NFS request stream

  Duplicate the root i-node
  Performance

  Typically it takes less than a second

24

Snapshot Deletion

  Delete a snapshot’s root i-node
  Clear bits in block-map file

  For each entry in block-map file, clear the bit representing the
snapshot

25

Performance

  SPEC SFS benchmark shows 8X faster than others

26

Network File System

  Sun introduced NFS v2 in early 80s
  NFS server exports directories to clients
  Clients mount NFS server’s exported directories

(auto-mount is possible)
  Multiple clients share a NFS server

Network NFS server Clients

27

NFS Protocol (v3)
1.  NULL: Do nothing
2.  GETATTR: Get file attributes
3.  SETATTR: Set file attributes
4.  LOOKUP: Lookup filename
5.  ACCESS: Check Access Permission
6.  READLINK: Read from symbolic link
7.  READ: Read From file
8.  WRITE: Write to file
9.  CREATE: Create a file
10.  MKDIR: Create a directory
11.  SYMLINK: Create a symbolic link
12.  MKNOD: Create a special device
13.  REMOVE: Remove a File
14.  RMDIR: Remove a Directory
15.  RENAME: Rename a File or Directory
16.  LINK: Create Link to an object
17.  READDIR: Read From Directory
18.  READDIRPLUS: Extended read from directory
19.  FSSTAT: Get dynamic file system information
20.  FSINFO: Get static file system Information
21.  PATHCONF: Retrieve POSIX information
22.  COMMIT: Commit cached data on a server to

stable storage

28

NFS Protocol

  No open and close
  Use a global handle in the protocol

  Read some bytes
  Write some bytes

  Questions
  What is stateless?
  Is NFS stateless?
  What is the tradeoffs of stateless vs. stateful?

29

NFS Implementation

Virtual file system

Client kernel

Local
FS

Local
FS

NFS
client

Buffer cache

Virtual file system

Local
FS

Local
FS

NFS
server

Buffer cache

NFS Server

Network

30

NFS Client Caching Issues

  Client caching
  Read-only file and directory data (expire in 60 seconds)
  Data written by the client machine (write back in 30 seconds)

  Consistency issues
  Multiple client machines can perform writes to their caches
  Some cache file data only and disable client caching of a file if

it is opened by multiple clients
  Some implement a network lock manager

31

NFS Protocol Development
  Version 2 issues

  18 operations
  Size: limit to 4GB file size
  Write performance: server writes data synchronously
  Several other issues

  Version 3 changes (most products still use this one)
  22 operations
  Size: increase to 64 bit
  Write performance: WRITE and COMMIT
  Fixed several other issues
  Still stateless

  Version 4 changes
  42 operations
  Solve the consistency issues
  Security issues
  Stateful

32

Summary

  Consistent updates
  Transactions use a write-ahead log and write-behind to update
  Journaling file systems use transactions

  WAFL
  Write anywhere layout
  Snapshots have become a standard feature

  NFS
  Stateless network file system protocol
  Client and server caching

