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Topics 

  Revisit Transactions and Logging 
  NetApp File System 
  NFS 
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Transactions 

  Bundle many operations into a transaction 
  One of the first transaction systems is Sabre American Airline 

reservation system, made by IBM 
  Primitives 

  BeginTransaction 
•  Mark the beginning of the transaction 

  Commit (End transaction) 
•  When transaction is done 

  Rollback (Abort transaction) 
•  Undo all the actions since “Begin transaction.” 

  Rules 
  Transactions can run concurrently 
  Rollback can execute anytime 
  Sophisticated transaction systems allow nested transactions 
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Implementation 
  BeginTransaction 

  Start using a “write-ahead” log on disk 
  Log all updates 

  Commit 
  Write “commit” at the end of the log 
  Then “write-behind” to disk by writing updates to disk 
  Clear the log  

  Rollback 
  Clear the log 

  Crash recovery 
  If there is no “commit” in the log, do nothing 
  If there is “commit,” replay the log and clear the log 

  Assumptions 
  Writing to disk is correct (recall the error detection and correction) 
  Disk is in a good state before we start 
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An Example: Atomic Money Transfer 
  Move $100 from account S to C (1 thread): 

BeginTransaction 
S = S - $100; 
C = C + $100; 

Commit 
  Steps: 

1: Write new value of S to log 
2: Write new value of C to log 
3: Write commit 
4: Write S to disk 
5: Write C to disk 
6: Clear the log 

  Possible crashes 
  After 1 
  After 2 
  After 3 before 4 and 5 

  Questions 
  Can we swap 3 with 4? 
  Can we swap 4 and 5? 

C = 110 
S = 700 

C = 10 
S = 800 
C = 110 
S = 700 

S=700 C=110 Commit 

Memory 
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Revisit The Implementation 
  BeginTransaction 

  Start using a “write-ahead” log on disk 
  Log all updates 

  Commit 
  Write “commit” at the end of the log 
  Then “write-behind” to disk by writing updates to disk 
  Clear the log  

  Rollback 
  Clear the log 

  Crash recovery 
  If there is no “commit” in the log, do nothing 
  If there is “commit,” replay the log and clear the log 

  Questions 
  What if there is a crash during the recovery? 
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Use Transactions in File Systems 

  Make a file operation a transaction 
  Create a file 
  Move a file 
  Write a chunk of data  
  … 
  Would this eliminate any need to run fsck after a crash? 

  Make arbitrary number of file operations a transaction 
  Just keep logging but make sure that things are idempotent: 

making a very long transaction 
  Recovery by replaying the log and correct the file system 
  This is called journaling file system 
  Almost all new file systems are journaling (Windows NTFS, 

Veritas file system, file systems for Linux) 
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Issue with Logging: Performance 

 For every disk write, we now have two disk writes (on 
different parts of the disk)? 
  It is not so bad because logging is sequential and write-behind 

can be done asynchronously. 
 Performance tricks 

  Changes made in memory and then logged to disk 
  Logging are sequentially done a different disk. 
  Merge multiple writes to the log with one write 
  Use NVRAM (Non-Volatile RAM) to keep the log 
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Log Management 

  How big is the log? Same size as the file system?  
  Observation 

  Log what’s needed for crash recovery 
  Management method 

  Checkpoint operation: flush the buffer cache to the log and 
then write behind 

  After a checkpoint, we can truncate log and start again 
  Log needs to be big enough to hold changes in memory 

  Some file systems log only metadata (file descriptors 
and directories) 
  Would this be a problem? 
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What to Log? 

 Physical blocks (directory blocks and inode blocks) 
  Easy to implement but takes more space 
  Which block image? 

•  Before operation: Easy to go backward during recovery 
•  After operation: Easy to go forward during recovery. 
•  Both: Can go either way. 

  Logical operations 
  Example: Add name “foo” to directory #41 
  More compact 
  But more work at recovery time 
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Log-structured File System (LFS) 

  Structure the entire file system as a log with segments 
  A segment has i-nodes, indirect blocks, and data blocks 
  All writes are sequential (no seeks) 
  There will be holes when deleting files 
  Questions 

  What about read performance? 
  How would you clean (garbage collection)? 

Used Unused 

Log structured 
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Case: NetApp’s NFS File Server 

  WAFL: Write Anywhere File Layout 
  The basic NetApp’s file system 

  Design goals 
  Fast services (fast means more operations/sec and higher 

bandwidth) 
  Support large file systems and allow growing smoothly 
  High-performance software RAID 
  Restart quickly after a crash 

  Special features 
  Introduce snapshots 
  Use NVRAM to reduce latency and maintain consistency 
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Snapshots 

  A snapshot is a read-only copy of the file system 
  Introduced in 1993 
  It has become a standard feature of today’s file server 

  Use snapshots 
  System administrator configures the number and frequency of snapshots 
  An initial system can keep up to 20 snapshots 
  Use snapshots to recover individual files 

  An example 
arizona% cd .snapshot 
arizona% ls 
hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1 
hourly.1 hourly.3 hourly.5 nightly.1 weekly.0 
arizona% 

  How much space does a snapshot consume? 
  10-20% space per week 
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i-node, Indirect and Data Blocks 

  WAFL uses 4KB blocks 
  i-nodes (evolved from UNIX’s) 
  Data blocks 

  File size < 64 bytes 
  i-node stores data directly 

  File size < 64K bytes 
  i-node stores 16 pointers to data 

  File size < 64M bytes 
  i-node stores 16 pointers to 

indirect blocks 
  Each indirect pointer block stores 

1K pointers to data 
  File size > 64M bytes 

  i-node stores pointers to doubly 
indirect blocks 

Data Data Data 

Data Data 

Data 

Data Data Data 
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WAFL Layout 

  A WAFL file system has 
  A root i-node: root of everything 
  An i-node file: contains all i-nodes 
  A block map file: indicates free blocks 
  An i-node map file: indicates free i-nodes 
  Data files: real files that users can see 

Metadata 
in files 
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Why Keeping Metadata in Files 

  Allow meta-data blocks to be written anywhere on disk 
  This is the origin of “Write Anywhere File Layout” 
  Any performance advantage? 

  Easy to increase the size of the file system dynamically 
  Add a disk can lead to adding i-nodes 
  Integrate volume manager with WAFL 

  Enable copy-on-write to create snapshots 
  Copy-on-write new data and metadata on new disk locations 
  Fixed metadata locations are cumbersome 
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Snapshot Implementation 
  WAFL file system is a tree of 

blocks 
  Snapshot step 1 

  Replicate the root i-node 
  New root i-node is the active file 

system 
  Old root i-node is the snapshot 

  Snapshot step 2…n 
  Copy-on-write blocks to the root 
  Active root i-node points to the new 

blocks 
  Writes to the new block 
  Future writes into the new blocks will 

not trigger copy-on-write 
  An “add-on” snapshot mechanism 

for a traditional file system? 

C 

1 

Root Root 

A F D B C 

1 2 

Modify 

C’ 

Modify 

1’ 
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File System Consistency 

  Create a snapshot 
  Create a consistency point or snapshot every 10 seconds 
  On a crash, revert the file system to this snapshot 
  Not visible by users 

  Many requests between consistency points 
  Consistency point i 
  Many writes 
  Consistency point i+1 (advanced atomically) 
  Many writes 
  … 

  Question 
  Any relationships with transactions? 
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Non-Volatile RAM 

  Non-Volatile RAM 
  Flash memory (slower) 
  Battery-backed DRAM (fast but battery lasts for only days) 

  Use an NVRAM to buffer writes 
  Buffer all write requests since the last consistency point 
  A clean shutdown empties NVRAM, creates one more 

snapshot, and turns off NVRAM 
  A crash recovery needs to recover data from NVRAM to the 

most recent snapshot and turn on the system 
  Use two logs 

  Buffer one while writing another 
  Issues 

  What is the main disadvantage of NVRAM? 
  How large should the NVRAM be? 
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Write Allocation 

  WAFL can write to any blocks on disk 
  File metadata (i-node file, block map file and i-node map file) 

is in the file system 
  WAFL can write blocks in any order 

  Rely on consistency points to enforce file consistency 
  NVRAM to buffer writes to implement ordering 

  WAFL can allocate disk space for many NFS operations 
at once in a single write episode 
  Reduce the number of disk I/Os 
  Allocate space that is low latency 

  Issue 
  What about read performance? 
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Snapshot Data Structure 

  WAFL uses 32-bit 
entries in the block 
map file 
  32-bit for each 4KB 

disk block 
  32-bit entry = 0: the 

block is free 
  Bit 0 = 1: 

active file system 
references the block 

  Bit 1 = 1: 
the most recent snapshot 

references the block 
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Snapshot Creation 

  Problem 
  Many NFS requests may arrive while creating a snapshot 
  File cache may need replacements 
  Undesirable to suspend the NFS request stream 

  WAFL solution 
  Before a creation, mark dirty cache data “in-snapshot" 
  Defer all modifications to “in-snapshot” data 
  Modify cache data not marked “in-snapshot” 
  Do not flush cache data not marked “in-snapshot” 
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Algorithm 

  Steps 
  Allocate disk space for “in-snapshot” blocks 

•  Copy “in-snapshot” cached i-nodes to disk buffer 
•  Clear “in-snapshot” bit of all cached i-nodes 

  Update the block-map file 
•  For each entry, copy the bit for active FS to the new snapshot 

  Flush 
•  Write all “in-snapshot” disk buffers to their new disk locations 
•  Restart NFS request stream 

  Duplicate the root i-node 
  Performance 

  Typically it takes less than a second 
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Snapshot Deletion 

  Delete a snapshot’s root i-node 
  Clear bits in block-map file 

  For each entry in block-map file, clear the bit representing the 
snapshot 
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Performance 

  SPEC SFS benchmark shows 8X faster than others 
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Network File System 

  Sun introduced NFS v2 in early 80s 
  NFS server exports directories to clients 
  Clients mount NFS server’s exported directories 

(auto-mount is possible) 
  Multiple clients share a NFS server 

Network NFS server Clients 
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NFS Protocol (v3) 
1.  NULL: Do nothing 
2.  GETATTR: Get file attributes 
3.  SETATTR: Set file attributes 
4.  LOOKUP: Lookup filename 
5.  ACCESS: Check Access Permission 
6.  READLINK: Read from symbolic link 
7.  READ: Read From file 
8.  WRITE: Write to file 
9.  CREATE: Create a file 
10.  MKDIR: Create a directory 
11.  SYMLINK: Create a symbolic link 
12.  MKNOD: Create a special device 
13.  REMOVE: Remove a File 
14.  RMDIR: Remove a Directory 
15.  RENAME: Rename a File or Directory 
16.  LINK: Create Link to an object 
17.  READDIR: Read From Directory 
18.  READDIRPLUS: Extended read from directory 
19.  FSSTAT: Get dynamic file system information 
20.  FSINFO: Get static file system Information 
21.  PATHCONF: Retrieve POSIX information 
22.  COMMIT: Commit cached data on a server to 

stable storage 
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NFS Protocol 

  No open and close 
  Use a global handle in the protocol 

  Read some bytes 
  Write some bytes 

  Questions 
  What is stateless? 
  Is NFS stateless? 
  What is the tradeoffs of stateless vs. stateful?   
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NFS Implementation 

Virtual file system 

Client kernel 

Local 
FS 

Local 
FS 

NFS 
client 

Buffer cache 

Virtual file system 

Local 
FS 

Local 
FS 

NFS 
server 

Buffer cache 

NFS Server  

Network 
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NFS Client Caching Issues 

  Client caching 
  Read-only file and directory data (expire in 60 seconds) 
  Data written by the client machine (write back in 30 seconds) 

  Consistency issues 
  Multiple client machines can perform writes to their caches 
  Some cache file data only and disable client caching of a file if 

it is opened by multiple clients 
  Some implement a network lock manager 
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NFS Protocol Development 
  Version 2 issues 

  18 operations 
  Size: limit to 4GB file size 
  Write performance: server writes data synchronously 
  Several other issues 

  Version 3 changes (most products still use this one) 
  22 operations 
  Size: increase to 64 bit 
  Write performance: WRITE and COMMIT 
  Fixed several other issues 
  Still stateless 

  Version 4 changes 
  42 operations 
  Solve the consistency issues 
  Security issues 
  Stateful 
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Summary 

  Consistent updates 
  Transactions use a write-ahead log and write-behind to update 
  Journaling file systems use transactions 

  WAFL 
  Write anywhere layout 
  Snapshots have become a standard feature 

  NFS 
  Stateless network file system protocol 
  Client and server caching 


