
COS 318: Operating Systems

Message Passing

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Today’s Topics

  Message passing
  Semantics
  How to use

  Implementation issues
  Synchronous vs. asynchronous
  Buffering
  Indirection
  Exceptions

3

Big Picture

Process

Sender

Process

Receiver

4

Send and Receive Primitives

send(dest,
type,
msg)

Sender

recv(src,
type,
msg)

Receiver

pid, file, port,… pid, file, port, any,…

buffer, n-bytes
buffer, ?-bytes

msg type expected
msg type

Many ways to design the message passing API

5

Synchronous Message Passing

  Move data between processes
  Sender: when data is ready, send it to the receiver process
  Receiver: when the data has arrived and when the receive process is

ready to take the data, move the data

  Synchronization
  Sender: signal the receiver process that a particular event happens
  Receiver: block until the event has happened

…

… …

…

S R

Send(R, buf, n);

Recv(S, &buf, &n);

6

Example: Producer-Consumer

  Questions
  Does this work?
  Would it work with multiple producers and 1 consumer?
  Would it work with 1 producer and multiple consumers?
  What about multiple producers and multiple consumers?

Producer(){
 ...
 while (1) {
 produce item;
 recv(Consumer, &credit);
 send(Consumer, item);
 }
}

Consumer(){
 ...
 for (i=0; i<N; i++)
 send(Producer, credit);
 while (1) {
 recv(Producer, &item);
 send(Producer, credit);
 consume item;
 }
}

7

Today’s Topics

  Message passing
  Semantics
  How to use

  Implementation issues
  Synchronous vs. asynchronous
  Buffering
  Indirection
  Exceptions

8

Implementation Issues

 Buffering messages
 Direct vs. indirect
 Unidirectional vs.

bidirectional
 Asynchronous vs.

synchronous
 Event handler vs. receive
 How to handle exceptions?

…

…

9

Buffering Messages

 No buffering
  Sender must wait until the

receiver receives the message
  Rendezvous on each message

 Bounded buffer
  Finite size
  Sender blocks on buffer full
  Use mesa-monitor to solve the

problem
 Unbounded buffer

  “Infinite” size
  Sender never blocks

buffer

10

Direct Communication

  A single buffer at the receiver
  More than one process may

send messages to the receiver
  To receive from a specific

sender, it requires searching
through the whole buffer

  A buffer at each sender
  A sender may send messages

to multiple receivers
  To get a message, it also

requires searching through the
whole buffer

…

…

11

Indirect Communication

  Use mailbox as the abstraction
  Allow many-to-many communication
  Require open/close a mailbox

  Buffering
  A buffer, its mutex and condition

variables should be at the mailbox

  Message size
  Not necessarily. One can break a

large message into packets

  Mailbox vs. pipe
  A mailbox allows many to many

communication
  A pipe implies one sender and one

receiver

mbox

pipe

12

Synchronous vs. Asynchronous: Send

 Synchronous
  Block on if resource is busy
  Initiate data transfer
  Block until data is out of its

source memory
 Asynchronous

  Block if resource is busy
  Initiate data transfer and

return
  Completion

•  Require applications to
check status

•  Notify or signal the
application

send(dest, type, msg)

msg transfer resource

status = async_send(dest, type, msg)
…
if !send_complete(status)
 wait for completion;
…
use msg data structure;
…

13

Synchronous vs. Asynchronous: Receive

 Synchronous
  Return data if there is a

message

 Asynchronous
  Return data if there is a

message
  Return status if there is no

message (probe)

recv(src, type, msg)

msg transfer resource

status = async_recv(src, type, msg);
if (status == SUCCESS)
 consume msg;

while (probe(src) != HaveMSG)
 wait for msg arrival
recv(src, type, msg);
consume msg;

14

Event Handler vs. Receive

  hrecv(src, type, msg, func)
  msg is an arg of func
  Execute “func” on a message

arrival

  Which one is more powerful?
  Recv with a thread can emulate a

Handler
  Handler can be used to emulate

recv by using Monitor

  Pros and Cons

void func(char * msg) {
 …
}

…
hrecv(src, type, msg, func)
…

while(1) {
 recv(src,type, msg);
 func(msg);
}

program
Create a thread

…

15

Example: Keyboard Input

 How do you implement keyboard input?
  Need an interrupt handler
  Generate a mbox message from the interrupt handler

 Suppose a keyboard device thread converts input
characters into an mbox message
  How would you synchronize between the keyboard interrupt

handler and device thread?
  How can a device thread convert input into mbox messages?

mbox

V(s);
…

while (1) {
 P(s);
 Acquire(m);
 convert …
 Release(m);
};

Interrupt
handler

Device
thread

Process

16

Exception: Process Termination

 R waits for a message from S,
but S has terminated
  Problem: R may be blocked

forever

 S sends a message to R,
but R has terminated
  Problem: S has no buffer and

will be blocked forever

S R

S R

17

Exception: Message Loss

 Use ack and timeout to detect
and retransmit a lost message
  Require the receiver to send an ack

message for each message
  Sender blocks until an ack message

is back or timeout
status = send(dest, msg, timeout);

  If timeout happens and no ack, then
retransmit the message

  Issues
  Duplicates
  Losing ack messages

S R
send
ack

18

Exception: Message Loss, cont’d

  Retransmission must handle
  Duplicate messages on receiver side
  Out-of-sequence ack messages on

sender side
  Retransmission

  Use sequence number for each
message to identify duplicates

  Remove duplicates on receiver side
  Sender retransmits on an out-of-

sequence ack
  Reduce ack messages

  Bundle ack messages
  Receiver sends noack messages:

can be complex
  Piggy-back acks in send messages

S R

send1
ack1

send2
ack2

19

Exception: Message Corruption

  Detection
  Compute a checksum over the entire message and send

the checksum (e.g. CRC code) as part of the message
  Recompute a checksum on receive and compare with the

checksum in the message
  Correction

  Trigger retransmission
  Use correction codes to recover

Data

Compute checksum

20

Example: Sockets API
  Abstraction for TCP and UDP

  Guest lecture by Prof. Freedman on 11/23
  Addressing

  IP address and port number
(216 ports available for users)

  Create and close a socket
  sockid = socket(af, type,

protocol);
  Sockerr = close(sockid);

  Bind a socket to a local address
  sockerr = bind(sockid, localaddr,

addrlength);

  Negotiate the connection
  listen(sockid, length);
  accept(sockid, addr, length);

  Connect a socket to destination
  connect(sockid, destaddr,

addrlength);

socket socket

bind

listen

accept

read

connect

write

write read

Server Client

21

Summary

  Message passing
  Move data between processes
  Implicit synchronization
  API design is important

  Implementation issues
  Synchronous method is most common
  Asynchronous method provides overlapping but requires

careful design considerations
  Indirection makes implementation flexible
  Exception needs to be carefully handled

