
COS 318: Operating Systems

Introduction

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

3

Course Staff and Logistics

  Instructor
  Andy Bavier, 212 CS Building, acb@cs.princeton.edu

Office hours: Tue 3-5pm
  Teaching Assistants

  Prem Gopalan, pgopalan@cs.princeton.edu
 Office hours: Fri 10am-noon

  Dominic Kao, dkthree@cs.princeton.edu
 Office hours: Fri 11am-1pm

  Information
  Website:

•  http://www.cs.princeton.edu/courses/archive/fall10/cos318/

  Subscribe to cos318@lists.cs.princeton.edu

4

Resolve “TBD”

  Regular precept
  Time: Tuesday 7:30pm – 8:30pm
  Location: default is this room, CS 105

  Review of x86 Real-Mode Assembly
  Monday Sep. 20, 7:30pm – 8:30pm

  Design review
  Monday Sep. 27, 5pm -- 9pm
  Sign up online

5

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS425: Database Systems
  COS471: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

6

Course Materials

  Textbook
  Modern Operating Systems, 3rd Edition, Andrew S.

Tanenbaum
  Lecture notes

  Available on website
  Precept notes

  Available on website
  Other resources – on website

7

Exams, Participation and Grading

  Grading
  First 5 projects: 50% with extra points
  Midterm: 20%
  Final project: 20%
  Reading & participation: 10%

  Midterm Exam
  Test lecture materials and projects
  Tentatively scheduled on Thursday of the midterm week

  Reading and participation
  Submit your reading notes BEFORE each lecture
  Sign-in sheet at each lecture
  Grading (3: excellent, 2: good, 1: poor, 0: none)

8

The First 5 Projects

  Projects
  Bootup (150-300 lines)
  Non-preemptive kernel (200-250 lines)
  Preemptive kernel (100-150 lines)
  Interprocess communication and driver (300-350 lines)
  Android OS (??? lines)

  How
  Pair up with a partner, will change after 3 projects
  Each project takes two weeks
  Design review at the end of week one
  All projects due Mondays 11:59pm

  The Lab
  Linux cluster in 010 Friends Center, a good place to be
  You can setup your own Linux PC to do projects

9

Project Grading

  Design Review
  Signup online for appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction if missing the appointment

  Project completion
  10 points for each project
  Extra points available

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

10

Final Project

  A simple file system
  Grading (20 points)
  Do it alone
  Due on Dean’s date (~3 weeks)

11

Things To Do

 Do not put your code or designs or thoughts
on the Web
  Other schools are using similar projects
  Not even on Facebook or the like

  Follow Honor System: ask when unsure, cooperation OK
but work is your own (or in pairs for projects)

  For today’s material:
  Read MOS 1.1-1.3

  For next time
  Read MOS 1.4-1.5

Email to acb@cs.princeton.edu

  Name
  Year
  Major
  Why you’re taking the class
  What you’d like to learn

12

13

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

14

What Is an Operating System?

  Software that sits between applications and hardware
  Also between different applications and different users

  Has privileged access to hardware
  Provides services and interfaces to applications
User applications call OS routines for access and services

Hardware

Operating System

vi gcc Browser DVD Player

What Does an Operating System Do?

  Provides a layer of abstraction for hardware resources
  Allows user programs to deal with higher-level, simpler,

and more portable concepts than the raw hardware
•  E.g., files rather than disk blocks

  Makes finite resources seem “infinite”
  Manages the resources

  Manage complex resources and their interactions for an
application

  Allow multiple applications to share resources without
hurting one another

  Allow multiple users to share resources without hurting
one another

15

Abstraction

  How to handle complexity
  Hide underlying details, and provide cleaner, easier-to-

use, more elegant concepts and interfaces
  Also provides standardized interfaces despite diversity of

implementation underneath
  A key to understanding Operating Systems
  A key principle in Computer Science

16

Example of Abstraction: Disk

  Disk hardware and operations are very complex
  Multiple heads, cylinders, sectors, segments
  Have to wait for physical movement before writing or

reading data to/from disk
  Data stored discontiguously for performance, reliability
  To read or write simple data would take a lot of

coordination if dealing with the hardware directly
  Sizes and speeds are different on different computers

  OS provides simple read() and write() calls as the
application programmer’s interface (API)
  Manages the complexity transparently, in conjunction

with the disk controller hardware

17

Example of Abstraction: Networks

  Data communicated from one computer to another are:
  Broken into fragments that are sent separately, and

arrive at different times and out of order
  Waited for and assembled at the destination
  Sometimes lost, so fragments have to be resent
  An application programmer doesn’t want to manage this

  OS provides a simple send() and receive() interface
  Takes care of the complexity, in conjunction with the

networking hardware

18

Resource Management

  Allocation
  Virtualization
  Reclamation
  Protection

19

Resource Allocation

  Computer has finite resources
  Different applications and users compete for them
  OS dynamically manages which applications get how

many resources
  Multiplex resources in space and time

  Time multiplexing: CPU, network
  Space multiplexing: disk, memory

  E.g., what if an application runs an infinite loop?
 while (1);

20

Resource Virtualization

  OS gives each program the illusion of effectively
infinite, private resources
  “infinite” memory (by backing up to disk)
  CPU (by time-sharing)

21

Resource Reclamation

  The OS giveth, and the OS taketh away
  Voluntary or involuntary at runtime
  Implied at program termination
  Cooperative

22

Protection

  You can’t hurt me, I can’t hurt you
  OS provides safety and security
  Protects programs and their data from one another, as

well as users from one another
  E.g., what if I could modify your data, either on disk or

while your program was running?

23

Mechanism vs. policy

  Mechanisms are tools or vehicles to implement policies
  Examples of policies:

  All users should be treated equally
  Preferred users should be treated better

24

25

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

26

A Typical Academic Computer (1988 vs. 2008)

1988 2008 Ratio

Intel CPU transistors 0.5M 1.9B ~4000x

Intel CPU core x clock 10Mhz 4×2.66Ghz ~1000x

DRAM 2MB 16GB 8000x

Disk 40MB 1TB 25,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $3K 1/10x

$/Mhz $30,000/10 $3,000/10,000 1/10,000x

27

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

  Performance/Price doubles every 18 months
  100x per decade
  Progress in next 18 months

 = ALL previous progress
  New storage = sum of all old storage (ever)
  New processing = sum of all old processing.

  This has led to some broad phases in computing,
and correspondingly in operating systems

15 years ago

Phase 1: Batch Systems
  Hardware very expensive, only one user at a time
  Batch processing: load, run, print

  OS linked in as a subroutine library
  Problem: better system utilization

  System idle when job waiting for I/O
  Development: multiprogramming

  Multiple jobs resident in computer’s memory
  Hardware switches between them (interrupts)
  Memory protection: keep bugs to individual programs

28

hardware Hardware

Application
OS

29

Phase 2: Time Sharing

  Problem: batch jobs hard to debug
  Use cheap terminals to share a computer interactively
  MULTICS: designed in 1963, run in 1969
  Shortly after, Unix enters the mainstream
  Issue: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

30

Phase 3: Personal Computer

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >100M units per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

31

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle

  OS are specialized
  Embedded OS
  Specially configured general-

purpose OS

32

Now: Multiple Processors per Machine

  Multiprocessors
  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Multicomputers

  Supercomputer with many CPUs and high-
speed communication

  Specialized OS with special message-
passing support

  Clusters
  A network of PCs
  Commodity OS

33

Trend: Multiple “Cores” per Processor
  Multicore or Manycore transition

  Intel and AMD have released 4-core CPUs
  SUN’s Niagara processor has 8-cores
  Azul packed 24-cores onto the same chip
  Intel has a TFlop-chip with 80 cores

  Accelerated need for software support
  OS support for manycores
  Parallel programming of applications

34

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

35

Why Study OS?

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power”

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Building a small OS will go a long way…

Why Study OS?

  Important for studying other areas
  Networking, distributed systems, …

  Full employment
  New hardware capabilities and organizations
  New features
  New approaches
  Engineering tradeoffs keep shifting as the hardware

changes below and the apps change above

36

37

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

38

What’s in COS 318?

  Methodology
  Lectures with discussions
  Readings with topics
  Six projects to build a small but real OS, play with Android

  Covered concepts
  Operating system structure

•  Processes, threads, system calls and virtual machine monitor
  Synchronization

•  Mutex, semaphores and monitors
  I/O subsystems

•  Device drivers, IPC, and introduction to networking
  Virtual memory

•  Address spaces and paging
  Storage system

•  Disks and file system

What is COS 318 Like?

  Is it theoretical or practical?
  Focus on concepts, also getting hands dirty in projects
  Engineering tradeoffs: requirements, constraints,

optimizations, imperfections
  High rate of change in the field yet lots of inertia in OSs

  Is it easy?
  No. Fast-paced, hard material, a lot of programming

  What will help me succeed?
  Solid C background, pre-reqs, tradeoff thinking
  NOT schedule overload

39

