
COS 318: Operating Systems

File Performance and Reliability

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Topics

  File buffer cache
  Disk failure and file recovery tools
  Consistent updates
  Transactions and logging

3

File Buffer Cache for Performance

  Cache files in main memory
  Check the buffer cache first
  Hit will read from or write to the

buffer cache
  Miss will read from the disk to

the buffer cache
  Usual questions

  What to cache?
  How to size?
  What to prefetch?
  How and what to replace?
  Which write policies?

User buffer User

Buffer
cache

Disk

Kernel

4

What to Cache?

  Things to consider
  i-nodes and indirect blocks of directories
  Directory files
  I-nodes and indirect blocks of files
  Files

  What is a good strategy?
  Cache i-nodes and indirect blocks if they are in use?
  Cache only the i-nodes and indirect blocks of the current

directory?
  Cache an entire file vs. referenced blocks of files

5

How to Size?

  An important issue is how to partition memory between
the buffer cache and VM cache

  Early systems use fixed-size buffer cache
  It does not adapt to workloads

  Later systems use variable size cache
  But, large files are common, how do we make adjustment?

  Solution
  Basically, we solve the problem using the working set idea,

remember?

Buffer cache
(90MB)

VM
(110MB)

Buffer cache
(120MB)

VM
(80MB)

6

Challenges: Multiple User Processes

 Kernel
  All processes share the same

buffer cache
  Global LRU may not be fair

 Solution
  Working set idea again

 Questions
  Can each process use a

different replacement strategy?
  Can we move the buffer cache

to the user level?
  What about duplications?
  Do we need to pin user

buffers?

User
process

User
process

User
process ...

Buffer cache

7

What to Prefetch?

  Optimal
  The blocks are fetched in just enough time to use them
  But, life is hard

  The good news is that files have locality
  Temporal locality
  Spatial locality

  Common strategies
  Prefetch next k blocks together (typically > 64KB)
  Some discard unreferenced blocks
  Cluster blocks (to the same cylinder group and neighborhood)

make prefetching efficient, directory and i-nodes if possible

8

How and What to Replace?

  Page replacement theory
  Use past to predict future
  LRU is good

  Buffer cache with LRU
replacement mechanism
  If b is in buffer cache, move

it to front and return b
  Otherwise, replace the tail

block, get b from disk, insert
b to the front

  Use double linked list with a
hash table

  Questions
  Why a hash table?
  What if file >> the cache?

…

LRU
(front)

…

Hash
table

9

Which Write Policies?

  Write through
  Whenever modify cached

block, write block to disk
  Cache is always consistent
  Simple, but cause more I/Os

  Write back
  When modifying a block, mark

it as dirty & write to disk later
  Fast writes, absorbs writes,

and enables batching
  So, what’s the problem?

User buffer User

Buffer
cache

Disk

Kernel

10

Write Back Complications

  Fundamental tension
  On crash, all modified data in cache is lost.
  The longer you postpone write backs, the faster you are and

the worst the damage is
  When to write back

  When a block is evicted
  When a file is closed
  On an explicit flush
  When a time interval elapses (30 seconds in Unix)

  Issues
  These write back options have no guarantees
  A solution is consistent updates (later)

11

File Recovery Tools

  Physical backup (dump) and recovery
  Dump disk blocks by blocks to a backup system
  Backup only changed blocks since the last backup

as an incremental
  Recovery tool is made accordingly

  Logical backup (dump) and recovery
  Traverse the logical structure from the root
  Selectively dump what you want to backup
  Verify logical structures as you backup
  Recovery tool selectively move files back

  Consistency check (e.g. fsck)
  Start from the root i-node
  Traverse the whole tree and mark reachable files
  Verify the logical structure
  Figure out what blocks are free

/

u

cos318

man

12

Recovery from Disk Block Failures

  Boot block
  Create a utility to replace the boot block
  Use a flash memory to duplicate the

boot block and kernel

  Super block
  If there is a duplicate, remake the file

system
  Otherwise, what would you do?

  Free block data structure
  Search all reachable files from the root
  Unreachable blocks are free

  i-node blocks
  How to recover?

  Indirect or data blocks
  How to recover?

bitmap

i-node

Indirect Indirect

Data Data Data

13

Persistency and Crashes

  File system promise: Persistency
  File system will hold a file until its owner

explicitly deletes it
  Backups can recover your file even

beyond the deletion point
  Why is this hard?

  A crash will destroy memory content
  Cache more ⇒ better performance
  Cache more ⇒ lose more on a crash
  A file operation often requires modifying

multiple blocks, but the system can only
atomically modify one at a time

  Systems can crash anytime

Memory

?

14

What Is A Crash?

  Crash is like a context switch
  Think about a file system as a

thread before the context switch
and another after the context
switch

  Two threads read or write same
shared state?

  Crash is like time travel
  Current volatile state lost; suddenly

go back to old state
  Example: move a file

•  Place it in a directory
•  Delete it from old
•  Crash happens and both

directories have problems

Before Crash After

Crash

Time

15

Approaches

  Throw everything away and start over
  Done for most things (e.g., make again)
  Not what you want to happen to your email

  Reconstruction
  Figure out where you are and make the file system consistent

and go from there
  Try to fix things after a crash (“fsck”)

  Make consistent updates
  Either new data or old data, but not garbage data

  Make multiple updates appear atomic
  Build arbitrary sized atomic units from smaller atomic ones
  Similar to how we built critical sections from locks, and locks

from atomic instructions

16

i-node
“cos318”

Write Metadata First

  Modify /u/cos318/foo

  Traverse to /u/cos318/

  Allocate data block

  Write pointer into i-node

  Write new data to foo

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Inconsistent

Crash Consistent

Writing metadata first can cause inconsistency

17

i-node
“cos318”

Write Data First

  Modify /u/cos318/foo

  Traverse to /u/cos318/

  Allocate data block

  Write new data to foo

  Write pointer into i-node

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Consistent

Crash Consistent

18

Consistent Updates: Bottom-Up Order

  The general approach is to use a “bottom up” order
  File data blocks, file i-node, directory file, directory i-node, …

  What about file buffer cache
  Write back all data blocks
  Update file i-node and write it to disk
  Update directory file and write it to disk
  Update directory i-node and write it to disk (if necessary)
  Continue until no directory update exists

  Does this solve the write back problem?
  Updates are consistent but leave garbage blocks around
  May need to run fsck to clean up once a while
  Ideal approach: consistent update without leaving garbage

19

Transaction Properties

  Group multiple operations together so that they have
“ACID” property:
  Atomicity

•  It either happens or doesn’t (no partial operations)
  Consistency

•  A transaction is a correct transformation of the state
  Isolation (serializability)

•  Transactions appear to happen one after the other
  Durability (persistency)

•  Once it happens, stays happened

  Question
  Do critical sections have ACID property?

20

Transactions

  Bundle many operations into a transaction
  One of the first transaction systems is Sabre American Airline

reservation system, made by IBM
  Primitives

  BeginTransaction
•  Mark the beginning of the transaction

  Commit (End transaction)
•  When transaction is done

  Rollback (Abort transaction)
•  Undo all the actions since “Begin transaction.”

  Rules
  Transactions can run concurrently
  Rollback can execute anytime
  Sophisticated transaction systems allow nested transactions

21

Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Assumptions
  Writing to disk is correct (recall the error detection and correction)
  Disk is in a good state before we start

22

An Example: Atomic Money Transfer
  Move $100 from account S to C (1 thread):

BeginTransaction
S = S - $100;
C = C + $100;

Commit
  Steps:

1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

  Possible crashes
  After 1
  After 2
  After 3 before 4 and 5

  Questions
  Can we swap 3 with 4?
  Can we swap 4 and 5?

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

23

Revisit The Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Questions
  What is “commit?”
  What if there is a crash during the recovery?

24

Two Threads Run Transactions
  Apply to the mid-term AtomicTransfer program

1: BeginTransaction
2: if (a1->id < a2->id) {
 Acquire(a1->lock); Acquire(a2->lock);
} else {

 Acquire(a2->lock); Acquire(a1->lock);
}

3: if ((a1->balance - $100) < 0) {
 Release(a2->lock); Release(a1->lock);
 goto 7;

 }
4: a1->balance -= $100;
5: a2->balance += $100;
6: Release(a2->lock); Release(a1->lock);
7: Commit

  What happens if
  Thread A performs 1-6; context switch
  Thread B performs 1-7; crash!

25

Two-Phase Locking for Transactions

  First phase
  Acquire all locks

  Second phase
  Commit operation release all locks

(no individual release operations)

  Rollback operation always undo the changes first and then
release all locks

26

Use Transactions in File Systems

  Make a file operation a transaction
  Create a file
  Move a file
  Write a chunk of data
  …
  Would this eliminate any need to run fsck after a crash?

  Make arbitrary number of file operations a transaction
  Just keep logging but make sure that things are idempotent:

making a very long transaction
  Recovery by replaying the log and correct the file system
  This is called logging file system or journaling file system
  Almost all new file systems are journaling (Windows NTFS,

Veritas file system, file systems on Linux)

27

Issue with Logging: Performance

 For every disk write, we now have two disk writes (on
different parts of the disk)?
  It is not so bad because once written to the log, it is safe to do

real writes later
 Performance tricks

  Changes made in memory and then logged to disk
  Log writes are sequential (synchronous writes can be fast if on

a separate disk)
  Merge multiple writes to the log with one write
  Use NVRAM (Non-Volatile RAM) to keep the log

28

Log Management

  How big is the log? Same size as the file system?
  Observation

  Log what’s needed for crash recovery
  Management method

  Checkpoint operation: flush the buffer cache to disk
  After a checkpoint, we can truncate log and start again
  Log needs to be big enough to hold changes in memory

  Some logging file systems log only metadata (file
descriptors and directories) and not file data to keep log
size down
  Would this be a problem?

29

What to Log?

 Physical blocks (directory blocks and inode blocks)
  Easy to implement but takes more space
  Which block image?

•  Before operation: Easy to go backward during recovery
•  After operation: Easy to go forward during recovery.
•  Both: Can go either way.

  Logical operations
  Example: Add name “foo” to directory #41
  More compact
  But more work at recovery time

30

Log-structured File System (LFS)

  Structure the entire file system as a log with segments
  A segment has i-nodes, indirect blocks, and data blocks
  All writes are sequential (no seeks)
  There will be holes when deleting files
  Questions

  What about read performance?
  How would you clean (garbage collection)?

Used Unused

Log structured

31

Summary

  File buffer cache
  True LRU is possible
  Simple write back is vulnerable to crashes

  Disk block failures and file system recovery tools
  Individual recovery tools
  Top down traversal tools

  Consistent updates
  Transactions and ACID properties
  Logging or Journaling file systems

