COS 318: Operating Systems Storage Devices

Andy Bavier **Computer Science Department Princeton University**

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

Today's Topics

- Magnetic disks
- Magnetic disk performance
- Disk arrays
- Flash memory

A Typical Magnetic Disk Controller

- External connection
 - IDE/ATA, SATA
 - SCSI, SCSI-2, Ultra SCSI, Ultra-160 SCSI, Ultra-320 SCSI
 - Fibre channel
- Cache
 - Buffer data between disk and interface
- Controller
 - Read/write operation
 - Cache replacement
 - Failure detection and recovery

Disk Caching

- Method
 - Use DRAM to cache recently accessed blocks
 - Most disk has 16MB
 - Some of the RAM space stores "firmware" (an embedded OS)
 - Blocks are replaced usually in an LRU order
- Pros
 - Good for reads if accesses have locality
- Cons
 - Need to deal with reliable writes

Disk Arm and Head

- Disk arm
 - A disk arm carries disk heads
- Disk head
 - Mounted on an actuator
 - Read and write on disk surface
- Read/write operation
 - Disk controller receives a command with <track#, sector#>
 - Seek the right cylinder (tracks)
 - Wait until the right sector comes
 - Perform read/write

Mechanical Component of A Disk Drive

Tracks

- Concentric rings around disk surface, bits laid out serially along each track
- Cylinder
 - A track of the platter, 1000-5000 cylinders per zone, 1 spare per zone
- Sectors
 - Each track is split into arc of track (min unit of transfer)

Disk Sectors

- Where do they come from?
 - Formatting process
 - Logical maps to physical
- What is a sector?
 - Header (ID, defect flag, ...)
 - Real space (e.g. 512 bytes)
 - Trailer (ECC code)
- What about errors?
 - Detect errors in a sector
 - Correct them with ECC
 - If not recoverable, replace it with a spare
 - Skip bad sectors in the future

Disks Were Large

They Are Now Much Smaller

Form factor: .5-1"× 4"× 5.7" Storage: 0.5-2TB

Form factor: .4-.7" × 2.7" × 3.9" Storage: 160-320GB

Form factor: $.2-.4" \times 2.1" \times 3.4"$ Storage: 1GB-8GB Replaced by Flash 9

Areal Density vs. Moore's Law

(Mark Kryder at SNW 2006)

10

	IBM RAMAC (1956)	Seagate Momentus (2006)	Difference
Capacity	5MB	160GB	32,000
Areal Density	2K bits/in ²	130 Gbits/in ²	65,000,000
Disks	50 @ 24" diameter	2 @ 2.5" diameter	1 / 2,300
Price/MB	\$1,000	\$0.01	1 / 100,000
Spindle Speed	1,200 RPM	5,400 RPM	5
Seek Time	600 ms	10 ms	1 / 60
Data Rate	10 KB/s	44 MB/s	4,400
Power	5000 W	2 W	1 / 2,500
Weight	~ 1 ton	4 oz	1 / 9,000

Sample Disk Specs (from Seagate)

	Cheetah 15k.7	Barracuda XT
Capacity		
Formatted capacity (GB)	600	2000
Discs	4	4
Heads	8	8
Sector size (bytes)	512	512
Performance		
External interface	Ultra320 SCSI, FC, S. SCSI	SATA
Spindle speed (RPM)	15,000	7,200
Average latency (msec)	2.0	4.16
Seek time, read/write (ms)	3.5/3.9	8.5/9.5
Track-to-track read/write (ms)	0.2-0.4	0.8/1.0
Internal transfer (MB/sec)	1,450-2,370	600
Transfer rate (MB/sec)	122-204	138
Cache size (MB)	16	64
Reliability		
Recoverable read errors	1 per 10 ¹² bits read	1 per 10 ¹⁰ bits read
Non-recoverable read errors	1 per 10 ¹⁶ bits read	1 per 10 ¹⁴ bits read

Disk Performance

Seek

- Position heads over cylinder, typically 3.5-9.5 ms
- Rotational delay
 - Wait for a sector to rotate underneath the heads
 - Typically 8 4 ms (7,200 15,000RPM) or ½ rotation takes 4 - 2ms
- Transfer bytes
 - Transfer bandwidth is typically 40-138 Mbytes/sec
- Performance of transfer 1 Kbytes
 - Seek (4 ms) + half rotational delay (2ms) + transfer (0.013 ms)
 - Total time is 6.01 ms or 167 Kbytes/sec! (1/360 of 60MB/s!)

More on Performance

What transfer size can get 90% of the disk bandwidth?

- Assume Disk BW = 60MB/sec, 1/2 rotation = 2ms, 1/2 seek = 4ms
- BW * 90% = size / (size/BW + rotation + seek)
- size = BW * (rotation + seek) * 0.9 / 0.1
 = 60MB * 0.006 * 0.9 / 0.1 = 3.24MB

Block Size (Kbytes)	% of Disk Transfer Bandwidth	
1Kbytes	0.28%	
1Mbytes	73.99%	
3.24Mbytes	90%	

Seek and rotational times dominate the cost of small accesses

- Disk transfer bandwidth are wasted
- Need algorithms to reduce seek time

FIFO (FCFS) order

- Method
 - First come first serve
- Pros
 - Fairness among requests
 - In the order applications expect
- Cons
 - Arrival may be on random spots on the disk (long seeks)
 - Wild swing can happen

98, 183, 37, 122, 14, 124, 65, 67

SSTF (Shortest Seek Time First)

- Method
 - Pick the one closest on disk
 - Rotational delay is in calculation
- Pros
 - Try to minimize seek time
- Cons
 - Starvation
- Question
 - Is SSTF optimal?
 - Can we avoid the starvation?

98, 183, 37, 122, 14, 124, 65, 67 (65, 67, 37, 14, 98, 122, 124, 183)

Elevator (SCAN)

- Method
 - Take the closest request in the direction of travel
 - Real implementations do not go to the end (called LOOK)
- Pros
 - Bounded time for each request
- Cons
 - Request at the other end will take a while

98, 183, 37, 122, 14, 124, 65, 67 (37, 14, 65, 67, 98, 122, 124, 183)

C-SCAN (Circular SCAN)

- Method
 - Like SCAN
 - But, wrap around
 - Real implementation doesn't go to the end (C-LOOK)
- Pros
 - Uniform service time
- Cons
 - Do nothing on the return

98, 183, 37, 122, 14, 124, 65, 67 (65, 67, 98, 122, 124, 183, 14, 37)

Discussions

- Which is your favorite?
 - FIFO
 - SSTF
 - SCAN
 - C-SCAN
- Disk I/O request buffering
 - Where would you buffer requests?
 - How long would you buffer requests?

RAID (Redundant Array of Independent Disks)

- Main idea
 - Store the error correcting codes on other disks
 - General error correcting codes are too powerful
 - Use XORs or single parity
 - Upon any failure, one can recover the entire block from the spare disk (or any disk) using XORs

Pros

- Reliability
- High bandwidth
- Cons
 - Cost

• The controller is complex

 $\mathsf{P}=\mathsf{D1}\oplus\mathsf{D2}\oplus\mathsf{D3}\oplus\mathsf{D4}$

 $\mathsf{D3}=\mathsf{D1}\oplus\mathsf{D2}\oplus\mathsf{P}\oplus\mathsf{D4}$

Synopsis of RAID Levels

RAID Level 6 and Beyond

- Goals
 - Less computation and fewer updates per random writes
 - Small amount of extra disk space
- Extended Hamming code
 - Remember Hamming code?
- Specialized Eraser Codes
 - IBM Even-Odd, NetApp RAID-DP, ...
- Beyond RAID-6
 - Reed-Solomon codes, using MOD 4 equations
 - Can be generalized to deal with k (>2) disk failures

Next Generation: FLASH

- Flash chip density increases on the Moore's law curve
 - 1995 16 Mb NAND flash chips
 - 2005 16 Gb NAND flash chips
 - 2009 64 Gb NAND flash chips Doubled each year since 1995

Market driven by Phones, Cameras, iPod,... Low entry-cost,

~\$30/chip \rightarrow ~\$3/chip

- 2012 1 Tb NAND flash
 - == 128 Gb chip
 - == 1TB or 2TB "disk" for ~\$400
 - or 128GB disk for \$40
 - or 32GB disk for \$5

What's Wrong With FLASH?

- Expensive: \$/GB
 - 2x less than cheap DRAM
 - 50x more than disk today, may drop to 10x in 2012
- Limited lifetime
 - ~50k to 100k writes / page (SLC)
 - ~15k to 60k writes / page (MLC)
 - But, suppose you do "wear leveling" and 200,000 writes/sec, If you have 1,000M pages on SLC flash (100k/page), it will take 15 years to wear out.
- Current performance limitations
 - Slow to write: can only write 0's, so erase (set all 1) then write
 - Large (e.g. 128K) blocks to erase

Current Development

- Flash Translation Layer (FTL)
 - Remapping
 - Wear-leveling
 - Write faster
- Form factors
 - SSD
 - USB, SD, Stick,...
 - PCI cards
- Performance
 - Fusion-IO with
 2.5TB, 6GB/s r/w,
 26µs latency

Summary

- Disk is complex
- Disk real density is on Moore's law curve
- Need large disk blocks to achieve good throughput
- System needs to perform disk scheduling
- RAID improves reliability and high throughput at a cost
- Flash memory has emerged at low and high ends

