COS 318: Operating Systems

/O Device and Drivers

Andy Bavier

Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

Midterm Summary

Thursday, Oct. 28 during normal class time
Suggested solution is online

Today’'s Topics

Device controllers
Device driver design
Synchronous and asynchronous |/O

Input and Output

A computer’s job is to process data
e Computation (CPU, cache, and memory)
e Move data into and out of a system (between I/O devices
and memory)
Challenges with 1/O devices
e Different categories: storage, networking, displays, etc.
e Large number of device drivers to support
e Device drivers run in kernel mode and can crash systems

Goals of the OS

e Provide a generic, consistent, convenient and reliable way to
access |/O devices

e Achieve potential I/O performance in a system

Revisit Hardware

Compute hardware
e CPU and caches

e Chipset

e Memory

|/O Hardware
e |/O bus or interconnect
e |/O controller or adaptor
e 1/O device

Two types of I/O devices
e Programmed I/O (PIO)

Memory

I/O bus

e Direct Memory Access (DMA)

e

Definitions and General Method

Overhead
e CPU time to initiate an operation -
Initiate Data transfer
Latency —

e Time to transfer one byte

e Overhead + 1 byte reaches
destination

Bandwidth

e Rate of I/O transfer, once initiated
e Mbytes/sec

General method
e Abstraction of byte transfers

e Batch transfers into block 1/O for
efficiency to prorate overhead and
latency over a large unit

Programmed Input Device

Device controller

e Status register
ready: if the host is done CPU
busy: if the controller is done
int: interrupt $

e Data regiSterS Memory

A simple mouse design /O bus
e Put (X, Y) in data registers on a
move g
e Interrupt

 1Controller

rdy [busy| int |...
Input on an interrupt Data (x)

e Read values in X, Y registers Data (y)

e Set ready bit

e \Wake up a process/thread or
execute a piece of code

"

)(
(D CVIGET)

il 5

‘z)

X

s

PR

B

X

il 5

Programmed Output Device

Device
e Status registers (ready, busy, ...)
e Data registers CPU

Example $
e A serial output device

Perform an output Memory

Wait until ready bit is clear 1/0 bus
Poll the busy bit

Writes the data to register(s) | Serial
: /| controller
Set ready bit rdy |busy|int | ...

Controller sets busy bit and Data
transfers data

e Controller clears the ready bit and
busy bit

Data

s

PR

Direct Memory Access (DMA)

2

¢

¢

*

X

il 5

fi

)(
(D CVIGET)

®

DMA controller or adaptor

e Status register
(ready, busy, interrupt, ...)

e DMA command register
e DMA register (address, size)
e DMA buffer
Host CPU initiates DMA
e Device driver call (kernel mode)
e Wait until DMA device is free

e Initiate a DMA transaction
(command, memory address, size)

e Block
Controller performs DMA

e DMA data to device
(size--; address++)

e Interrupt on completion
(size == 0)
Interrupt handler (on completion)
e \Wakeup the blocked process

Memory

1/O bus

rdy |busy

int | ...

DMA command

address

size

Buffer

Today’'s Topics

¢ Device controllers
+ Device driver design
¢ Synchronous and asynchronous /O

TR e

10

B

X

,;2 %

/0O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

(IGET)

Recall Interrupt Handling

Save context

Mask interrupts if needed

Set up a context for interrupt service

Set up a stack for interrupt service

Acknowledge the interrupt controller, enable it if needed
Save entire context to PCB

Run the interrupt service

Unmask interrupts if needed

Possibly change the priority of the process

Run the scheduler

12

Device Drivers

A

A

Device

.| Device
Device [>
controller
.| Device
Device [>
controller
Device \
Device
- controller

A

Interrupt Handling

A 4

Device |

driver

Device

A 4

driver

| Device

A 4

driver | |

[/O System

Rest of the
operating
system

13

A Typical Device Driver Design

Operating system and driver communication
e Commands and data between OS and device drivers

Driver and hardware communication
e Commands and data between driver and hardware

Driver operations

e Initialize devices

e Interpreting commands from OS

e Schedule multiple outstanding requests
e Manage data transfers
[
[

Accept and process interrupts
Maintain the integrity of driver and kernel data structures

14

Device Driver Interface

Open(deviceNumber)
e Initialization and allocate resources (buffers)

Close(deviceNumber)
e Cleanup, deallocate, and possibly turnoff

Device driver types

e Block: fixed sized block data transfer

e Character: variable sized data transfer

e [erminal: character driver with terminal control
e Network: streams for networking

15

Character and Block Device Interfaces

Character device interface
e read(deviceNumber, bufferAddr, size)
» Reads “size” bytes from a byte stream device to “bufferAddr”

e write(deviceNumber, bufferAddr, size)
« Write “size” bytes from “bufferAddr” to a byte stream device

Block device interface
e read(deviceNumber, deviceAddr, bufferAddr)
 Transfer a block of data from “deviceAddr” to “bufferAddr”

e write(deviceNumber, deviceAddr, bufferAddr)

» Transfer a block of data from “bufferAddr” to “deviceAddr”
e seek(deviceNumber, deviceAddress)

* Move the head to the correct position

» Usually not necessary

16

Unix Device Driver Interface Entry Points
®

init ()
e Initialize hardware
start ()
e Boot time initialization (require system services)
open (dev, flag, 1id) and close(dev, flag, id)
e Initialization resources for read or write, and release afterwards
halt ()
e Call before the system is shutdown
intr (vector)
e Called by the kernel on a hardware interrupt
read(..) and write () calls
e Data transfer
poll (pri)
e (Called by the kernel 25 to 100 times a second
ioctl (dev, cmd, arg, mode)
e special request processing

17

Today’'s Topics

¢ Device controllers
¢ Device driver design
¢ Synchronous and asynchronous /O

18

Synchronous vs. Asynchronous |/O

Synchronous 1/O

e read() or write() will block a user process until its completion
e OS overlaps synchronous I/O with another process

Asynchronous I/O
e read() or write() will not block a user process
e the user process can do other things before 1/O completion
e |/O completion will notify the user process

19

Detailed Steps of Blocked Read

A process issues a read call which executes a system call
System call code checks for correctness and buffer cache
If it needs to perform I/O, it will issues a device driver call
Device driver allocates a buffer for read and schedules I/O
Controller performs DMA data transfer

Block the current process and schedule a ready process
Device generates an interrupt on completion

Interrupt handler stores any data and notifies completion
Move data from kernel buffer to user buffer

Wakeup blocked process (make it ready)

User process continues when it is scheduled to run

20

Asynchronous 1I/O

API

e Non-blocking read() and write()

e Status checking call

e Notification call

e Different form the synchronous I/O API

Implementation

e On a write
« Copy to a system buffer, initiate the write and return
* Interrupt on completion or check status
e On aread
« Copy data from a system buffer if the data is there
» Otherwise, return with a special status

21

Why Buffering?
®
Speed mismatch between the producer and consumer

e Character device and block device, for example
e Adapt different data transfer sizes (packets vs. streams)

Deal with address translation
e |/O devices see physical memory
e User programs use virtual memory
Spooling
e Avoid deadlock problems

Caching

e Avoid I/O operations

22

Think About Performance

A terminal connects to computer via a serial line

e Type character and get characters back to display

e RS-232 is bit serial: start bit, character code, stop bit (9600
baud)

Do we have any cycles left?

e 10 users or 10 modems

e 900 interrupts/sec per user

e \What should the overhead of an interrupt be

Technique to minimize interrupt overhead
e Interrupt coalescing

23

Other Design Issues

Build device drivers

e Statically
* A new device driver requires reboot OS

e Dynamically
» Download a device driver without rebooting OS
* Almost every modern OS has this capability

How to down load device driver dynamically?
e Load drivers into kernel memory

e Install entry points and maintain related data structures
e Initialize the device drivers

24

Dynamic Binding: Indirection

/Open(1, ...);

Indirect table §
5
k=
O

=
Interrupt :
—
handlers 0
ge
a
Other
Kernel
services

oG %
9

m‘mmmﬁ

|

Driver for device 0

open(...) {

Driver for device 1

|| open(...) {

}

}

read(...) {

;

read(...) {
}

25

Issues with Device Drivers

Flexible for users, ISVs and IHVs
e Users can download and install device drivers
e Vendors can work with open hardware platforms

Dangerous methods
e Device drivers run in kernel mode

e Bad device drivers can cause kernel crashes and introduce
security holes

Progress on making device driver more secure
e Checking device driver codes
e Build state machines for device drivers

26

Summary

Device controllers

e Programmed 1I/O is simple but inefficient
e DMA is efficient (asynchronous) and complex

Device drivers

Dominate the code size of OS

Dynamic binding is desirable for desktops or laptops
Device drivers can introduce security holes

Progress on secure code for device drivers but completely
removing device driver security is still an open problem

27

